File size: 8,345 Bytes
ed8c5c9 87ed7e8 f8df299 87ed7e8 f8df299 87ed7e8 f8df299 87ed7e8 f8df299 87ed7e8 f8df299 87ed7e8 da9b9a7 87ed7e8 ed8c5c9 f8df299 ffb8213 87ed7e8 ffb8213 87ed7e8 cd6011a ffb8213 87ed7e8 ffb8213 87ed7e8 ffb8213 00d3d0b ffb8213 00d3d0b ffb8213 5110c34 00d3d0b 5110c34 00d3d0b f8df299 5110c34 f8df299 a94e933 f8df299 da9b9a7 f8df299 00d3d0b f8df299 5110c34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
language:
- en
- es
- ca
licence: apache-2.0
tags:
- spanish
- catalan
- falcon-7b
datasets:
- BSC-LT/open_data_26B_tokens_balanced_es_ca
metrics:
- ppl
model-index:
- name: falcon_7b_balanced_tokenizer_fp16_CPT_open_data_26B_tokens_balanced_es_ca
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: BSC-LT/open_data_26B_tokens_balanced_es_ca
type: Causal Language Modeling
config: default
split: validation
args: default
metrics:
- name: Perplexity
type: ppl
value: 8.59
widget:
- text: |-
Respòn a la pregunta següent.
Pregunta: "Qui viu a França?"
Resposta: "A França viuen els francesos."
----
Respòn a la pregunta següent.
Pregunta: "Quina és la capital de Suècia?"
Resposta: "La capital de Suècia és Estocolm."
----
Respòn a la pregunta següent.
Pregunta: "Quina beguda es consumeix als matins per despertar-se?"
Resposta: "La majoria de gent consumeix cafè per despertar-se."
----
Respòn a la pregunta següent.
Pregunta: "Qui és Leo Messi?"
Resposta:
example_title: Pregunta-Resposta
- text: |-
Extrae las entidades nombradas del siguiente texto:
Texto: "Me llamo Wolfgang y vivo en Berlin"
Entidades: Wolfgang:PER, Berlin:LOC
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center"
Entidades: parc güell:LOC, barcelona supercomputing center:LOC
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Maria y Miguel no tienen ningún problema contigo"
Entidades: Maria:PER, Miguel:PER
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Damián se cortó el pelo"
Entidades: Damián:PER
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo"
Entidades: Pablo:PER, Barcelona:LOC
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Carlos comparte piso con Marc"
Entidades:
example_title: Entidades-Nombradas
license: apache-2.0
pipeline_tag: text-generation
---
# falcon_7b_balanced_tokenizer_fp16_CPT_open_data_26B_tokens_balanced_es_ca
## Model description
The **Cǒndor-7B** is a transformer-based causal language model for Catalan, Spanish, and English. It is based on the [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model and has been trained on a 26B token trilugual corpus collected from publicly available corpora and crawlers.
## Intended uses & limitations
The **Cǒndor-7B** model is ready-to-use only for causal language modeling to perform text-generation tasks. However, it is intended to be fine-tuned on a generative downstream task.
## How to use
Here is how to use this model:
```python
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
input_text = "Maria y Miguel no tienen ningún "
model = "BSC-LT/condor-7b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
generation = pipeline(
input_text,
max_length=200,
do_sample=True,
top_k=10,
eos_token_id=tokenizer.eos_token_id,
)
print(f"Result: {generation['generated_text']}")
```
## Limitations and biases
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Language adaptation
We adapted the original Falcon-7B model to Spanish and Catalan by swapping the tokenizer and adjusting the embedding layer. The adaptation procedure is explained in this [blog](https://medium.com/@mpamies247/ee1ebc70bc79).
### New vocabulary
We trained a new BPE Tokenizer for the Catalan and Spanish languages (equal representation). We shuffled a small amount of English in the mixture (since English is in the model training data).
The resulting data has the following language distribution:
|Language|%|
|---|---|
|En|16.84%|
|Es|41.38%|
|Ca|41.79%|
This reduced drastically the number of tokens required to tokenize a text in the target language while the English tokenization shows a small increase.
### Embedding Layer Initialization
In order to fully take advantage of the English Pre-Training of the original Falcon model, we decided to re-use the embedding weights of the original model for those tokens shared between the two Tokenizers (the new and the old one). The rest of the embedding weights are initialized as the mean value of the weights of the original Tokenizer.
## Training
### Training data
The training corpus consists 26B tokens of several corpora gathered from web crawlings and public corpora.
| Dataset | Language | Tokens (pre-epoch) | Epochs |
|---------------------|----------|--------------------|--------------|
| Wikipedia | en | 2169.97M | 1.428144485 |
| C4_es | es | 53709.80M | 0.1049686196 |
| Biomedical | es | 455.03M | 0.7140722425 |
| Legal | es | 995.70M | 0.7140722425 |
| Wikipedia | es | 693.60M | 1.428144485 |
| Gutenberg | es | 53.18M | 0.7140722425 |
| C4_ca | ca | 2826.00M | 2.142216727 |
| Biomedical | ca | 11.80M | 1.428144485 |
| RacoCatalá Noticias | ca | 17.16M | 2.142216727 |
| RacoCatalá Forums | ca | 333.73M | 2.142216727 |
| CaWaC | ca | 57.79M | 2.142216727 |
| Wikipedia | ca | 228.01M | 3.570361212 |
| Vilaweb | ca | 50.34M | 2.142216727 |
The dataset has the following language distribution:
|Language|%|
|---|---|
|En|16.84%|
|Es|41.38%|
|Ca|41.79%|
## Training procedure
The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 50,257 tokens. Once the model has been successfully initialized, we continued its pre-training in the three target languages: Catalan, Spanish, and English. We kept a small amount of English in order to avoid catastrophic forgetting. The training lasted a total of 96 hours with 8 NVIDIA H100 GPUs of 80GB of RAM.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.13.1
- Tokenizers 0.13.3
## Additional information
### Author
Language Technologies Unir at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to [email protected]
### Copyright
Copyright (c) 2023 Langtech Unit at Barcelona Supercomputing Center
### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). This work was also partially funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx) within the framework of the Plan-TL.
|