File size: 8,520 Bytes
ed8c5c9 87ed7e8 e555d41 f8df299 e555d41 87ed7e8 f8df299 87ed7e8 f8df299 c68ab1e f8df299 87ed7e8 e555d41 87ed7e8 cfdd5ba 87ed7e8 cfdd5ba 87ed7e8 cfdd5ba 99eec11 87ed7e8 da9b9a7 ed8c5c9 f8df299 c68ab1e f8df299 4574f98 c3da3eb 4574f98 45201c6 4574f98 45201c6 4574f98 ffb8213 87ed7e8 0f53b7c 45201c6 87ed7e8 cd6011a 4574f98 cd6011a 45201c6 0f53b7c cd6011a eab4076 cd6011a eab4076 cd6011a eab4076 cd6011a eab4076 cd6011a eab4076 cd6011a eab4076 cd6011a 4574f98 45201c6 cd6011a ffb8213 87ed7e8 0f53b7c c6991a0 0f53b7c 87ed7e8 ffb8213 0f53b7c 00d3d0b 32ede28 00d3d0b e004ab0 00d3d0b 5110c34 00d3d0b d30688b 0f53b7c f8df299 15de9a2 3826b49 5110c34 f8df299 d917d6b 4257f04 45201c6 f8df299 da9b9a7 f8df299 45201c6 0f53b7c f8df299 0f53b7c 45201c6 d30688b 45201c6 f8df299 00d3d0b f8df299 15de9a2 f8df299 5110c34 45201c6 5110c34 45201c6 5110c34 15de9a2 5110c34 45201c6 5110c34 bee816e 45201c6 d30688b ea92527 4257f04 c6991a0 4257f04 ea92527 4257f04 c6991a0 ea92527 c6991a0 ea92527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
language:
- en
- es
- ca
licence:
- apache-2.0
tags:
- aguila
- falcon
- spanish
- catalan
metrics:
- ppl
model-index:
- name: aguila_7b
results:
- task:
name: Causal Language Modeling
type: text-generation
metrics:
- name: Perplexity
type: ppl
value: 8.59
pipeline_tag: text-generation
widget:
- text: |-
Respon a la pregunta següent.
Pregunta: "Quina és la capital de Suècia?"
Resposta: "La capital de Suècia és Estocolm."
----
Respon a la pregunta següent.
Pregunta: "Quina beguda es consumeix als matins per despertar-se?"
Resposta: "La majoria de gent consumeix cafè per despertar-se."
----
Respon a la pregunta següent.
Pregunta: "Explica com funciona un motor de combustió"
Resposta:
example_title: Pregunta-Resposta
- text: |-
Extrae las entidades nombradas del siguiente texto:
Texto: "Me llamo Wolfgang y vivo en Berlin"
Entidades: Wolfgang:PER, Berlin:LOC
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center"
Entidades: parc güell:LOC, barcelona supercomputing center:LOC
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Maria y Miguel no tienen ningún problema contigo"
Entidades: Maria:PER, Miguel:PER
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Damián se cortó el pelo"
Entidades: Damián:PER
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo"
Entidades: Pablo:PER, Barcelona:LOC
----
Extrae las entidades nombradas del siguiente texto:
Texto: "Carlos comparte piso con Marc"
Entidades:
example_title: Entidades-Nombradas
---
# Ǎguila-7B
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Language adaptation](#language-adaptation)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact](#contact)
- [Copyright](#copyright)
- [License](#license)
- [Funding](#funding)
- [Disclaimer](#disclaimer)
</details>
## Model description
**Ǎguila-7B** is a transformer-based causal language model for Catalan, Spanish, and English.
It is based on the [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model and has been trained on a 26B token
trilingual corpus collected from publicly available corpora and crawlers.
## Intended uses and limitations
The **Ǎguila-7B** model is ready-to-use only for causal language modeling to perform text-generation tasks.
However, it is intended to be fine-tuned for downstream tasks.
## How to use
Here is how to use this model:
```python
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
input_text = "El mercat del barri és fantàstic, hi pots trobar"
model_id = "projecte-aina/aguila-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
generator = pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
generation = generator(
input_text,
do_sample=True,
top_k=10,
eos_token_id=tokenizer.eos_token_id,
)
print(f"Result: {generation[0]['generated_text']}")
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model.
However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques
on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Language adaptation
We adapted the original [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model to Spanish and Catalan by swapping the tokenizer and adjusting the embedding layer.
The adaptation procedure is explained in [this blog post](https://medium.com/@mpamies247/ee1ebc70bc79).
## Training
### Training data
The training corpus consists of 26B tokens of several corpora gathered from web crawlings and public domain data.
| Dataset | Language | Words (per-epoch) | Epochs |
|---------------------|----------|--------------------|--------------|
| Wikipedia | en | 2169.97M | 1.428144485 |
| C4_es | es | 53709.80M | 0.1049686196 |
| Biomedical | es | 455.03M | 0.7140722425 |
| Legal | es | 995.70M | 0.7140722425 |
| Wikipedia | es | 693.60M | 1.428144485 |
| Gutenberg | es | 53.18M | 0.7140722425 |
| C4_ca | ca | 2826.00M | 2.142216727 |
| Biomedical | ca | 11.80M | 1.428144485 |
| RacoCatalà Noticias | ca | 17.16M | 2.142216727 |
| RacoCatalà Forums | ca | 333.73M | 2.142216727 |
| CaWaC | ca | 57.79M | 2.142216727 |
| Wikipedia | ca | 228.01M | 3.570361212 |
| Vilaweb | ca | 50.34M | 2.142216727 |
The dataset has the following language distribution:
|Language|Percentage|
|--------|----------|
| En | 16.84% |
| Es | 41.38% |
| Ca | 41.79% |
Note: A small amount of English data was kept to avoid catastrophic forgetting.
## Training procedure
The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) with a vocabulary size of 50,257 tokens.
After training a new tokenizer and adapting [falcon-7b](https://huggingface.co/tiiuae/falcon-7b)'s embedding layer, the model was
further pre-trained in three target languages: Catalan, Spanish and English.
The training lasted a total of 320 hours on 8 NVIDIA H100 GPUs with 80GB RAM.
### Training hyperparameters
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- train_batch_size: 1
- eval_batch_size: 1
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam
- betas: (0.9,0.999)
- epsilon: 1e-08
- learning_rate: 5e-05
- lr_scheduler_type: linear
- num_epochs: 1.0
### Framework versions
- Pytorch 2.0.0
- Transformers 4.30.2
- Datasets 2.13.1
- Tokenizers 0.13.3
## Additional information
### Author
The Language Technologies Unit from Barcelona Supercomputing Center.
### Contact
For further information, please send an email to <[email protected]>.
### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.
### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by:
- The [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
- The [Spanish State Secretariat for Digitalization and Artificial Intelligence](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx) within the framework of the [Plan de Impulso de las Tecnologías del Lenguaje](https://plantl.mineco.gob.es/Paginas/index.aspx).
### Disclaimer
<details>
<summary>Click to expand</summary>
The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0.
Be aware that the model may have biases and/or any other undesirable distortions.
When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it)
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and,
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner and creator of the model (Barcelona Supercomputing Center)
be liable for any results arising from the use made by third parties.
</details> |