--- language: - en - es - ca licence: apache-2.0 tags: - spanish - catalan - falcon-7b datasets: - BSC-LT/open_data_26B_tokens_balanced_es_ca metrics: - ppl model-index: - name: falcon_7b_balanced_tokenizer_fp16_CPT_open_data_26B_tokens_balanced_es_ca results: - task: name: Causal Language Modeling type: text-generation dataset: name: BSC-LT/open_data_26B_tokens_balanced_es_ca type: Causal Language Modeling config: default split: validation args: default metrics: - name: Perplexity type: ppl value: 8.59 widget: - text: |- Respòn a la pregunta següent. Pregunta: "Qui viu a França?" Resposta: "A França viuen els francesos." ---- Respòn a la pregunta següent. Pregunta: "Quina és la capital de Suècia?" Resposta: "La capital de Suècia és Estocolm." ---- Respòn a la pregunta següent. Pregunta: "Quina beguda es consumeix als matins per despertar-se?" Resposta: "La majoria de gent consumeix cafè per despertar-se." ---- Respòn a la pregunta següent. Pregunta: "Qui és Leo Messi?" Resposta: example_title: Pregunta-Resposta - text: |- Extrae las entidades nombradas del siguiente texto: Texto: "Me llamo Wolfgang y vivo en Berlin" Entidades: Wolfgang:PER, Berlin:LOC ---- Extrae las entidades nombradas del siguiente texto: Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center" Entidades: parc güell:LOC, barcelona supercomputing center:LOC ---- Extrae las entidades nombradas del siguiente texto: Texto: "Maria y Miguel no tienen ningún problema contigo" Entidades: Maria:PER, Miguel:PER ---- Extrae las entidades nombradas del siguiente texto: Texto: "Damián se cortó el pelo" Entidades: Damián:PER ---- Extrae las entidades nombradas del siguiente texto: Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo" Entidades: Pablo:PER, Barcelona:LOC ---- Extrae las entidades nombradas del siguiente texto: Texto: "Carlos comparte piso con Marc" Entidades: example_title: Entidades-Nombradas license: apache-2.0 pipeline_tag: text-generation --- # falcon_7b_balanced_tokenizer_fp16_CPT_open_data_26B_tokens_balanced_es_ca ## Model description The **Cǒndor-7B** is a transformer-based causal language model for Catalan, Spanish, and English. It is based on the [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) model and has been trained on a 26B token trilugual corpus collected from publicly available corpora and crawlers. ## Intended uses & limitations The **Cǒndor-7B** model is ready-to-use only for causal language modeling to perform text-generation tasks. However, it is intended to be fine-tuned on a generative downstream task. ## How to use Here is how to use this model: ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM input_text = "Maria y Miguel no tienen ningún " model = "BSC-LT/condor-7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) generation = pipeline( input_text, max_length=200, do_sample=True, top_k=10, eos_token_id=tokenizer.eos_token_id, ) print(f"Result: {generation['generated_text']}") ``` ## Limitations and biases At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Language adaptation We adapted the original Falcon-7B model to Spanish and Catalan by swapping the tokenizer and adjusting the embedding layer. The adaptation procedure is explained in this [blog](https://medium.com/@mpamies247/ee1ebc70bc79). ### New vocabulary We trained a new BPE Tokenizer for the Catalan and Spanish languages (equal representation). We shuffled a small amount of English in the mixture (since English is in the model training data). The resulting data has the following language distribution: |Language|%| |---|---| |En|16.84%| |Es|41.38%| |Ca|41.79%| This reduced drastically the number of tokens required to tokenize a text in the target language while the English tokenization shows a small increase. ### Embedding Layer Initialization In order to fully take advantage of the English Pre-Training of the original Falcon model, we decided to re-use the embedding weights of the original model for those tokens shared between the two Tokenizers (the new and the old one). The rest of the embedding weights are initialized as the mean value of the weights of the original Tokenizer. ## Training ### Training data The training corpus consists 26B tokens of several corpora gathered from web crawlings and public corpora. | Dataset | Language | Tokens (pre-epoch) | Epochs | |---------------------|----------|--------------------|--------------| | Wikipedia | en | 2169.97M | 1.428144485 | | C4_es | es | 53709.80M | 0.1049686196 | | Biomedical | es | 455.03M | 0.7140722425 | | Legal | es | 995.70M | 0.7140722425 | | Wikipedia | es | 693.60M | 1.428144485 | | Gutenberg | es | 53.18M | 0.7140722425 | | C4_ca | ca | 2826.00M | 2.142216727 | | Biomedical | ca | 11.80M | 1.428144485 | | RacoCatalá Noticias | ca | 17.16M | 2.142216727 | | RacoCatalá Forums | ca | 333.73M | 2.142216727 | | CaWaC | ca | 57.79M | 2.142216727 | | Wikipedia | ca | 228.01M | 3.570361212 | | Vilaweb | ca | 50.34M | 2.142216727 | The dataset has the following language distribution: |Language|%| |---|---| |En|16.84%| |Es|41.38%| |Ca|41.79%| ## Training procedure The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 50,257 tokens. Once the model has been successfully initialized, we continued its pre-training in the three target languages: Catalan, Spanish, and English. We kept a small amount of English in order to avoid catastrophic forgetting. The training lasted a total of 96 hours with 8 NVIDIA H100 GPUs of 80GB of RAM. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3 ## Additional information ### Author Language Technologies Unir at the Barcelona Supercomputing Center (langtech@bsc.es) ### Contact information For further information, send an email to aina@bsc.es ### Copyright Copyright (c) 2023 Langtech Unit at Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). This work was also partially funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx) within the framework of the Plan-TL.