Fairseq
English
Catalan
File size: 8,154 Bytes
a2713e5
33738db
8b170e8
 
 
 
 
 
 
 
a2713e5
5197d82
e561586
 
 
8b170e8
5197d82
e561586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
043797c
e561586
 
 
 
 
 
 
 
8b170e8
 
 
e561586
 
 
 
 
e1ecce0
 
e561586
 
 
 
 
5197d82
 
e1ecce0
 
e561586
 
 
5197d82
 
e561586
 
 
 
 
 
5197d82
e561586
 
5197d82
e561586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5197d82
e561586
 
 
 
 
e1ecce0
ee4756d
8b170e8
86984dc
ee4756d
e1ecce0
8b170e8
 
16f001d
e561586
 
 
8b170e8
 
e561586
 
8b170e8
e561586
5197d82
 
718b5b6
5197d82
e1ecce0
 
5197d82
 
 
 
e561586
 
 
 
8b170e8
e561586
8b170e8
 
e561586
 
8b170e8
e561586
8b170e8
e561586
 
 
8b170e8
e561586
8b170e8
e561586
 
 
 
8b170e8
 
 
 
 
 
 
e561586
8b170e8
 
e561586
8b170e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: apache-2.0
datasets:
- projecte-aina/CA-EN_Parallel_Corpus
language:
- en
- ca
metrics:
- bleu
library_name: fairseq
---
## Projecte Aina's English-Catalan machine translation model
  
## Model description

This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of English-Catalan datasets, 
which after filtering and cleaning comprised 30.023.034 sentence pairs. The model was evaluated on the Flores and NTREX evaluation datasets.  

## Intended uses and limitations

You can use this model for machine translation from English to Catalan. 

## How to use

### Usage
Required libraries:

```bash
pip install ctranslate2 pyonmttok
```

Translate a sentence using python 
```python
import ctranslate2
import pyonmttok
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="projecte-aina/aina-translator-en-ca", revision="main")

tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
tokenized=tokenizer.tokenize("Welcome to the Aina Project!")

translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
print(tokenizer.detokenize(translated[0][0]['tokens']))
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. 
However, we are well aware that our models may be biased. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. 

## Training

### Training data

The model was trained on a combination of several datasets, including data collected from [Opus](https://opus.nlpl.eu/), [HPLT](https://hplt-project.org/), 
an internally created [CA-EN Parallel Corpus](https://huggingface.co/datasets/projecte-aina/CA-EN_Parallel_Corpus), and other sources.

### Training procedure

### Data preparation

 All datasets are deduplicated and filtered to remove any sentence pairs with a cosine similarity of less than 0.75. 
 This is done using sentence embeddings calculated using [LaBSE](https://huggingface.co/sentence-transformers/LaBSE). 
 The filtered datasets are then concatenated to form a final corpus of 30.023.034 parallel sentences and before training the punctuation 
 is normalized using a modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py)

#### Tokenization

 All data is tokenized using sentencepiece, with a 50 thousand token sentencepiece model learned from the combination of all filtered training data. 
 This model is included.   

#### Hyperparameters

The model is based on the Transformer-XLarge proposed by [Subramanian et al.](https://aclanthology.org/2021.wmt-1.18.pdf)
The following hyperparamenters were set on the Fairseq toolkit:


| Hyperparameter                     | Value                            |
|------------------------------------|----------------------------------|
| Architecture                       | transformer_vaswani_wmt_en_de_big |
| Embedding size                     | 1024                             |
| Feedforward size                   | 4096                             |
| Number of heads                    | 16                               |
| Encoder layers                     | 24                               |
| Decoder layers                     | 6                                |
| Normalize before attention         | True                             |
| --share-decoder-input-output-embed | True                             |
| --share-all-embeddings             | True                             |
| Effective batch size               | 96.000                           |
| Optimizer                          | adam                             |
| Adam betas                         | (0.9, 0.980)                     |
| Clip norm                          | 0.0                              |
| Learning rate                      | 1e-3                             |
| Lr. schedurer                      | inverse sqrt                     |
| Warmup updates                     | 4000                             |
| Dropout                            | 0.1                              |
| Label smoothing                    | 0.1                              |

The model was trained for a total of 16000 updates. Weights were saved every 1000 updates and reported results are the average of the last 6 checkpoints. 

## Evaluation

### Variable and metrics

We use the BLEU score for evaluation on the following test sets: 
[Spanish Constitution (TaCon)](https://elrc-share.eu/repository/browse/tacon-spanish-constitution-mt-test-set/84a96138b98611ec9c1a00155d02670628f3e6857b0f422abd82abc3795ec8c2/), 
[United Nations](https://zenodo.org/record/3888414#.Y33-_tLMIW0), 
[AAPP](https://elrc-share.eu/repository/browse/catalan-spanish-catgov-corpus/8088130a722811ed9c1a00155d02670690607f8261a847549c8a0583cbe729da/),
[European Commission](https://elrc-share.eu/repository/browse/european-commission-corpus/8a419b1758ea11ed9c1a00155d0267069bd085cae124481589b0858e5b274327/), 
[Flores-200](https://github.com/facebookresearch/flores), 
[Cybersecurity](https://elrc-share.eu/repository/browse/cyber-mt-test-set/2bd93faab98c11ec9c1a00155d026706b96a490ed3e140f0a29a80a08c46e91e/), 
[wmt19 biomedical test set](http://www.statmt.org/wmt19/biomedical-translation-task.html), 
[wmt13 news test set](https://elrc-share.eu/repository/browse/catalan-wmt2013-machine-translation-shared-task-test-set/84a96139b98611ec9c1a00155d0267061a0aa1b62e2248e89aab4952f3c230fc/).

### Evaluation results

Below are the evaluation results on the machine translation from English to Catalan compared to [Softcatalà](https://www.softcatala.org/) and 
[Google Translate](https://translate.google.es/?hl=es):


| Test set             | SoftCatalà | Google Translate | aina-translator-en-ca |
|----------------------|------------|------------------|---------------|
| Spanish Constitution | 32,6       | 37,8             | **41,2**      |
| United Nations       | 39,0       | 40,5             | **41,2**      |
| AAPP                 | 46,5       | 51,40            | **51,70**     |
| European Commission  | 49,1       | **52,0**         | 51            |
| Flores 200 dev       | 41,0       | **45,1**         | 43,3          |
| Flores 200 devtest   | 42,1       | **46,0**         | 44,1          |
| Cybersecurity        | 42,5       | **48,1**         | 45,8          |
| wmt 19 biomedical    | 21,7       | 25,5             | **26,7**      |
| wmt 13 news          | 34,9       | **35,7**         | 34,0          |
| **Average**          | 37,9       | **41,34**        | 40,91         |

## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <[email protected]>.

### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).

### Disclaimer

<details>
<summary>Click to expand</summary>

The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. 

Be aware that the model may have biases and/or any other undesirable distortions.

When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) 
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, 
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the model (Barcelona Supercomputing Center) 
be liable for any results arising from the use made by third parties.

</details>