Fairseq
Galician
Catalan
File size: 7,315 Bytes
cbe49d6
 
7f73329
 
 
 
 
 
cbe49d6
b1cf35e
 
 
 
7f73329
2417e26
 
 
b1cf35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f73329
b1cf35e
51e4e23
b1cf35e
 
 
 
 
7f73329
 
 
 
b1cf35e
 
 
 
2417e26
 
 
 
 
b1cf35e
 
 
 
 
7f73329
 
9a3cde0
7f73329
b1cf35e
 
 
 
7f73329
 
b1cf35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f73329
b1cf35e
7f73329
22d2b6f
7f73329
 
b1cf35e
7f73329
 
 
 
 
 
51e4e23
 
 
b646fee
7f73329
 
b1cf35e
7f73329
b1cf35e
7f73329
 
 
 
 
b1cf35e
7f73329
 
 
 
 
b1cf35e
7b8ca41
 
d9be129
7f73329
b1cf35e
7f73329
b1cf35e
 
7f73329
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: apache-2.0
language:
- gl
- ca
metrics:
- bleu
library_name: fairseq
---
## Projecte Aina’s Galician-Catalan machine translation model
 
## Model description

This model was trained from scratch using the [Fairseq toolkit](https://fairseq.readthedocs.io/en/latest/) on a combination of Galician-Catalan datasets 
totalling approximately 75 million sentence pairs. comprising both Catalan-Galician data sourced from Opus, and synthetic Galician-Catalan data created by the GL-ES translator of
[Proxecto Nós](https://huggingface.co/proxectonos/Nos_MT-OpenNMT-es-gl) on the Spanish side of the Projecte Aina Spanish-Catalan corpus.
The model was evaluated on the Flores, and NTREX evaluation datasets. 

## Intended uses and limitations

You can use this model for machine translation from Galician to Catalan.

## How to use

### Usage
Required libraries:

```bash
pip install ctranslate2 pyonmttok
```

Translate a sentence using python
```python
import ctranslate2
import pyonmttok
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="projecte-aina/aina-translator-gl-ca", revision="main")
tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
tokenized=tokenizer.tokenize("Benvido ao proxecto Ilenia.")
translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
print(tokenizer.detokenize(translated[0][0]['tokens']))
```

## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. 
However, we are well aware that our models may be biased. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. 

## Training

### Training data

The Catalan-Galician data is a combination of publicly available bilingual datasets collected from [Opus](https://opus.nlpl.eu/) and synthetic data created by translating
the the Spanish side of the Projecte Aina Spanish-Catalan corpus using the GL-ES translator of
[Proxecto Nós](https://huggingface.co/proxectonos/Nos_MT-OpenNMT-es-gl).



### Training procedure

### Data preparation

 All datasets are deduplicated and filtered to remove any sentence pairs with a cosine similarity of less than 0.75.
 This is done using sentence embeddings calculated using [LaBSE](https://huggingface.co/sentence-transformers/LaBSE). 
 The filtered datasets are then concatenated to form the final training corpus and before training the punctuation is normalized using a 
 modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py)


#### Tokenization

 All data is tokenized using sentencepiece, with a 50 thousand token sentencepiece model  learned from the combination of all filtered training data. 
 This model is included.  

#### Hyperparameters

The model is based on the Transformer-XLarge proposed by [Subramanian et al.](https://aclanthology.org/2021.wmt-1.18.pdf)
The following hyperparameters were set on the Fairseq toolkit:

| Hyperparameter                 	| Value                        	|
|------------------------------------|----------------------------------|
| Architecture                   	| transformer_vaswani_wmt_en_de_big |
| Embedding size                 	| 1024                         	|
| Feedforward size               	| 4096                         	|
| Number of heads                	| 16                           	|
| Encoder layers                 	| 24                           	|
| Decoder layers                 	| 6                            	|
| Normalize before attention     	| True                         	|
| --share-decoder-input-output-embed | True                         	|
| --share-all-embeddings         	| True                         	|
| Effective batch size           	| 48.000                       	|
| Optimizer                      	| adam                         	|
| Adam betas                     	| (0.9, 0.980)                 	|
| Clip norm                      	| 0.0                          	|
| Learning rate                  	| 5e-4                         	|
| Lr. schedurer                  	| inverse sqrt                 	|
| Warmup updates                 	| 8000                         	|
| Dropout                        	| 0.1                          	|
| Label smoothing                	| 0.1                          	|

The model was trained for 24.000 updates on the parallel data collected from the web. 
This data was then concatenated with the synthetic parallel data and training continued for a total of 34.000 updates.
Weights were saved every 1000 updates and reported results are the average of the last 4 checkpoints.

## Evaluation

### Variable and metrics

We use the BLEU score for evaluation on test sets: [Flores-200](https://github.com/facebookresearch/flores/tree/main/flores200),
and [NTREX](https://github.com/MicrosoftTranslator/NTREX).

### Evaluation results

Below are the evaluation results on the machine translation from Galician to Catalan compared to [Google Translate](https://translate.google.com/), 
[M2M100 1.2B](https://huggingface.co/facebook/m2m100_1.2B), [NLLB 200 3.3B](https://huggingface.co/facebook/nllb-200-3.3B) and 
[ NLLB-200's distilled 1.3B variant](https://huggingface.co/facebook/nllb-200-distilled-1.3B):

| Test set         	|Google Translate|M2M100 1.2B| NLLB 1.3B | NLLB 3.3 | aina-translator-gl-ca |
|----------------------|----|-------|-----------|------------------|---------------|
|Flores 101 devtest   	|**36,4**|32,6| 22,3   	| 34,3   	| 32,4     	|
| NTREX                 |**34,7**|34,0|20,4    	| 34,2     	| 33,7     	|
| Average           	|**35,6**|33,3| 21,4| 34,3     	    | 33,1      	|


## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <[email protected]>.

### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work is funded by the Ministerio para la Transformación Digital y de la Función Pública - Funded by EU – NextGenerationEU 
within the framework of the [project ILENIA](https://proyectoilenia.es/) 
with reference 2022/TL22/00215337. 

### Disclaimer

<details>
<summary>Click to expand</summary>

The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. 

Be aware that the model may have biases and/or any other undesirable distortions.

When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) 
or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, 
in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the model (Barcelona Supercomputing Center) 
be liable for any results arising from the use made by third parties.

</details>