gonzalez-agirre commited on
Commit
612eee4
·
1 Parent(s): 238324c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -18
README.md CHANGED
@@ -45,24 +45,28 @@ model-index:
45
 
46
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Semantic Textual Similarity.
47
 
48
- The **roberta-base-ca-v2-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
49
-
50
- ## Datasets
51
- We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation.
52
-
53
- ## Evaluation and results
54
- We evaluated the _roberta-base-ca-v2-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines:
55
-
56
- | Model | STS-ca (Combined score) |
57
- | ------------|:-------------|
58
- | roberta-base-ca-v2-cased-sts | 79.07 |
59
- | roberta-base-ca-cased-sts | **80.19** |
60
- | mBERT | 74.26 |
61
- | XLM-RoBERTa | 61.61 |
 
 
62
 
 
63
 
 
64
 
65
- For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
66
 
67
  ## How to use
68
  To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code:
@@ -87,7 +91,7 @@ sentence_pairs = [("El llibre va caure per la finestra.", "El llibre va sortir v
87
 
88
  predictions = pipe(prepare(sentence_pairs), add_special_tokens=False)
89
 
90
- # convert back to scores to the original 1 and 5 interval
91
  for prediction in predictions:
92
  prediction['score'] = logit(prediction['score'])
93
  print(predictions)
@@ -101,7 +105,37 @@ Expected output:
101
 
102
  <sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._
103
 
104
- ## Citing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
106
  ```bibtex
107
  @inproceedings{armengol-estape-etal-2021-multilingual,
@@ -126,4 +160,8 @@ If you use any of these resources (datasets or models) in your work, please cite
126
  ```
127
 
128
  ### Funding
129
- This work was funded by the [Catalan Government](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of the [AINA project.](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
 
 
 
 
 
45
 
46
  # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Semantic Textual Similarity.
47
 
48
+ ## Table of Contents
49
+ - [Model Description](#model-description)
50
+ - [Intended Uses and Limitations](#intended-uses-and-limitations)
51
+ - [How to Use](#how-to-use)
52
+ - [Training](#training)
53
+ - [Training Data](#training-data)
54
+ - [Training Procedure](#training-procedure)
55
+ - [Evaluation](#evaluation)
56
+ - [Variable and Metrics](#variable-and-metrics)
57
+ - [Evaluation Results](#evaluation-results)
58
+ - [Licensing Information](#licensing-information)
59
+ - [Citation Information](#citation-information)
60
+ - [Funding](#funding)
61
+ - [Contributions](#contributions)
62
+
63
+ ## Model description
64
 
65
+ The **roberta-base-ca-v2-cased-sts** is a Semantic Textual Similarity (STS) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).
66
 
67
+ ## Intended Uses and Limitations
68
 
69
+ **roberta-base-ca-v2-cased-sts** model can be used to assess the similarity between two snippets of text. The model is limited by its training dataset and may not generalize well for all use cases.
70
 
71
  ## How to use
72
  To get the correct<sup>1</sup> model's prediction scores with values between 0.0 and 5.0, use the following code:
 
91
 
92
  predictions = pipe(prepare(sentence_pairs), add_special_tokens=False)
93
 
94
+ # convert back to scores to the original 0 and 5 interval
95
  for prediction in predictions:
96
  prediction['score'] = logit(prediction['score'])
97
  print(predictions)
 
105
 
106
  <sup>1</sup> _**avoid using the widget** scores since they are normalized and do not reflect the original annotation values._
107
 
108
+ ## Training
109
+
110
+ ### Training data
111
+ We used the STS dataset in Catalan called [STS-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) for training and evaluation.
112
+
113
+ ### Training Procedure
114
+ The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set, and then evaluated it on the test set.
115
+
116
+ ## Evaluation
117
+
118
+ ### Variable and Metrics
119
+
120
+ This model was finetuned maximizing the average score between the Pearson and Spearman correlations.
121
+
122
+ ## Evaluation results
123
+ We evaluated the _roberta-base-ca-v2-cased-sts_ on the STS-ca test set against standard multilingual and monolingual baselines:
124
+
125
+ | Model | STS-ca (Combined score) |
126
+ | ------------|:-------------|
127
+ | roberta-base-ca-v2-cased-sts | 79.07 |
128
+ | roberta-base-ca-cased-sts | **80.19** |
129
+ | mBERT | 74.26 |
130
+ | XLM-RoBERTa | 61.61 |
131
+
132
+ For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).
133
+
134
+ ## Licensing Information
135
+
136
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
137
+
138
+ ## Citation Information
139
  If you use any of these resources (datasets or models) in your work, please cite our latest paper:
140
  ```bibtex
141
  @inproceedings{armengol-estape-etal-2021-multilingual,
 
160
  ```
161
 
162
  ### Funding
163
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
164
+
165
+ ## Contributions
166
+
167
+ [N/A]