carlosdanielhernandezmena
commited on
Adding info to the README file for the first time.
Browse files
README.md
CHANGED
@@ -1,3 +1,266 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ca
|
3 |
+
datasets:
|
4 |
+
- projecte-aina/whisper-large-v3-ca-3catparla
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- catalan
|
9 |
+
- whisper-large-v3
|
10 |
+
- projecte-aina
|
11 |
+
- barcelona-supercomputing-center
|
12 |
+
- bsc
|
13 |
+
license: apache-2.0
|
14 |
+
model-index:
|
15 |
+
- name: whisper-large-v3-ca-3catparla
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Automatic Speech Recognition
|
19 |
+
type: automatic-speech-recognition
|
20 |
+
dataset:
|
21 |
+
name: 3CatParla (Test)
|
22 |
+
type: projecte-aina/3catparla_asr
|
23 |
+
split: test
|
24 |
+
args:
|
25 |
+
language: ca
|
26 |
+
metrics:
|
27 |
+
- name: WER
|
28 |
+
type: wer
|
29 |
+
value: 0.96
|
30 |
+
- task:
|
31 |
+
name: Automatic Speech Recognition
|
32 |
+
type: automatic-speech-recognition
|
33 |
+
dataset:
|
34 |
+
name: 3CatParla (Dev)
|
35 |
+
type: projecte-aina/3catparla_asr
|
36 |
+
split: dev
|
37 |
+
args:
|
38 |
+
language: ca
|
39 |
+
metrics:
|
40 |
+
- name: WER
|
41 |
+
type: wer
|
42 |
+
value: 0.92
|
43 |
+
- task:
|
44 |
+
name: Automatic Speech Recognition
|
45 |
+
type: automatic-speech-recognition
|
46 |
+
dataset:
|
47 |
+
name: Mozilla Common Voice 17.0 (Test)
|
48 |
+
type: mozilla-foundation/common_voice_17_0
|
49 |
+
split: test
|
50 |
+
args:
|
51 |
+
language: ca
|
52 |
+
metrics:
|
53 |
+
- name: WER
|
54 |
+
type: wer
|
55 |
+
value: 10.32
|
56 |
+
- task:
|
57 |
+
name: Automatic Speech Recognition
|
58 |
+
type: automatic-speech-recognition
|
59 |
+
dataset:
|
60 |
+
name: Mozilla Common Voice 17.0 (Dev)
|
61 |
+
type: mozilla-foundation/common_voice_17_0
|
62 |
+
split: validation
|
63 |
+
args:
|
64 |
+
language: ca
|
65 |
+
metrics:
|
66 |
+
- name: WER
|
67 |
+
type: wer
|
68 |
+
value: 9.26
|
69 |
+
- task:
|
70 |
+
name: Automatic Speech Recognition
|
71 |
+
type: automatic-speech-recognition
|
72 |
+
dataset:
|
73 |
+
name: Common Voice Benchmark Catalan Accents
|
74 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
75 |
+
split: Balearic female
|
76 |
+
args:
|
77 |
+
language: ca
|
78 |
+
metrics:
|
79 |
+
- name: WER
|
80 |
+
type: wer
|
81 |
+
value: 12.25
|
82 |
+
- task:
|
83 |
+
name: Automatic Speech Recognition
|
84 |
+
type: automatic-speech-recognition
|
85 |
+
dataset:
|
86 |
+
name: Common Voice Benchmark Catalan Accents
|
87 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
88 |
+
split: Balearic male
|
89 |
+
args:
|
90 |
+
language: ca
|
91 |
+
metrics:
|
92 |
+
- name: WER
|
93 |
+
type: wer
|
94 |
+
value: 12.18
|
95 |
+
- task:
|
96 |
+
name: Automatic Speech Recognition
|
97 |
+
type: automatic-speech-recognition
|
98 |
+
dataset:
|
99 |
+
name: Common Voice Benchmark Catalan Accents
|
100 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
101 |
+
split: Central female
|
102 |
+
args:
|
103 |
+
language: ca
|
104 |
+
metrics:
|
105 |
+
- name: WER
|
106 |
+
type: wer
|
107 |
+
value: 8.51
|
108 |
+
- task:
|
109 |
+
name: Automatic Speech Recognition
|
110 |
+
type: automatic-speech-recognition
|
111 |
+
dataset:
|
112 |
+
name: Common Voice Benchmark Catalan Accents
|
113 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
114 |
+
split: Central male
|
115 |
+
args:
|
116 |
+
language: ca
|
117 |
+
metrics:
|
118 |
+
- name: WER
|
119 |
+
type: wer
|
120 |
+
value: 8.73
|
121 |
+
- task:
|
122 |
+
name: Automatic Speech Recognition
|
123 |
+
type: automatic-speech-recognition
|
124 |
+
dataset:
|
125 |
+
name: Common Voice Benchmark Catalan Accents
|
126 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
127 |
+
split: Northern female
|
128 |
+
args:
|
129 |
+
language: ca
|
130 |
+
metrics:
|
131 |
+
- name: WER
|
132 |
+
type: wer
|
133 |
+
value: 8.09
|
134 |
+
- task:
|
135 |
+
name: Automatic Speech Recognition
|
136 |
+
type: automatic-speech-recognition
|
137 |
+
dataset:
|
138 |
+
name: Common Voice Benchmark Catalan Accents
|
139 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
140 |
+
split: Northern male
|
141 |
+
args:
|
142 |
+
language: ca
|
143 |
+
metrics:
|
144 |
+
- name: WER
|
145 |
+
type: wer
|
146 |
+
value: 8.28
|
147 |
+
- task:
|
148 |
+
name: Automatic Speech Recognition
|
149 |
+
type: automatic-speech-recognition
|
150 |
+
dataset:
|
151 |
+
name: Common Voice Benchmark Catalan Accents
|
152 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
153 |
+
split: Northwestern female
|
154 |
+
args:
|
155 |
+
language: ca
|
156 |
+
metrics:
|
157 |
+
- name: WER
|
158 |
+
type: wer
|
159 |
+
value: 7.88
|
160 |
+
- task:
|
161 |
+
name: Automatic Speech Recognition
|
162 |
+
type: automatic-speech-recognition
|
163 |
+
dataset:
|
164 |
+
name: Common Voice Benchmark Catalan Accents
|
165 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
166 |
+
split: Northwestern male
|
167 |
+
args:
|
168 |
+
language: ca
|
169 |
+
metrics:
|
170 |
+
- name: WER
|
171 |
+
type: wer
|
172 |
+
value: 8.44
|
173 |
+
- task:
|
174 |
+
name: Automatic Speech Recognition
|
175 |
+
type: automatic-speech-recognition
|
176 |
+
dataset:
|
177 |
+
name: Common Voice Benchmark Catalan Accents
|
178 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
179 |
+
split: Valencian female
|
180 |
+
args:
|
181 |
+
language: ca
|
182 |
+
metrics:
|
183 |
+
- name: WER
|
184 |
+
type: wer
|
185 |
+
value: 9.58
|
186 |
+
- task:
|
187 |
+
name: Automatic Speech Recognition
|
188 |
+
type: automatic-speech-recognition
|
189 |
+
dataset:
|
190 |
+
name: Common Voice Benchmark Catalan Accents
|
191 |
+
type: projecte-aina/commonvoice_benchmark_catalan_accents
|
192 |
+
split: Valencian male
|
193 |
+
args:
|
194 |
+
language: ca
|
195 |
+
metrics:
|
196 |
+
- name: WER
|
197 |
+
type: wer
|
198 |
+
value: 9.10
|
199 |
+
---
|
200 |
+
# whisper-large-v3-ca-3catparla
|
201 |
+
**Paper:** [3CatParla: A New Open-Source Corpus of Broadcast TV in Catalan for Automatic Speech Recognition](https://iberspeech.tech/)
|
202 |
+
|
203 |
+
The "whisper-large-v3-ca-3catparla" is an acoustic model suitable for Automatic Speech Recognition in Catalan. It is the result of fine-tuning the model "openai/whisper-large-v3" with 710 hours of Catalan data released by the Projecte AINA (https://projecteaina.cat/) from Barcelona, Spain.
|
204 |
+
|
205 |
+
The specific dataset used to create the model is called ["3Catparla"](projecte-aina/whisper-large-v3-ca-3catparla).
|
206 |
+
|
207 |
+
The fine-tuning process was perform during July (2024) in the servers of the [Barcelona Supercomputing Center](https://www.bsc.es/) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena).
|
208 |
+
|
209 |
+
# Evaluation
|
210 |
+
```python
|
211 |
+
import torch
|
212 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
213 |
+
|
214 |
+
#Load the processor and model.
|
215 |
+
MODEL_NAME="projecte-aina/whisper-large-v3-ca-3catparla"
|
216 |
+
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
217 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda")
|
218 |
+
|
219 |
+
#Load the dataset
|
220 |
+
from datasets import load_dataset, load_metric, Audio
|
221 |
+
ds=load_dataset("projecte-aina/whisper-large-v3-ca-3catparla",split='test')
|
222 |
+
|
223 |
+
#Downsample to 16kHz
|
224 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
|
225 |
+
|
226 |
+
#Process the dataset
|
227 |
+
def map_to_pred(batch):
|
228 |
+
audio = batch["audio"]
|
229 |
+
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
|
230 |
+
batch["reference"] = processor.tokenizer._normalize(batch['normalized_text'])
|
231 |
+
|
232 |
+
with torch.no_grad():
|
233 |
+
predicted_ids = model.generate(input_features.to("cuda"))[0]
|
234 |
+
|
235 |
+
transcription = processor.decode(predicted_ids)
|
236 |
+
batch["prediction"] = processor.tokenizer._normalize(transcription)
|
237 |
+
|
238 |
+
return batch
|
239 |
+
|
240 |
+
#Do the evaluation
|
241 |
+
result = ds.map(map_to_pred)
|
242 |
+
|
243 |
+
#Compute the overall WER now.
|
244 |
+
from evaluate import load
|
245 |
+
|
246 |
+
wer = load("wer")
|
247 |
+
WER=100 * wer.compute(references=result["reference"], predictions=result["prediction"])
|
248 |
+
print(WER)
|
249 |
+
```
|
250 |
+
**Test Result**: 0.96
|
251 |
+
|
252 |
+
# BibTeX entry and citation info
|
253 |
+
* When publishing results based on these models please refer to:
|
254 |
+
```bibtex
|
255 |
+
@misc{mena2024whisperlarge3catparla,
|
256 |
+
title={Acoustic Model in Catalan: whisper-large-v3-ca-3catparla.},
|
257 |
+
author={Hernandez Mena, Carlos Daniel},
|
258 |
+
organization={Barcelona Supercomputing Center},
|
259 |
+
url={https://huggingface.co/projecte-aina/whisper-large-v3-ca-3catparla},
|
260 |
+
year={2024}
|
261 |
+
}
|
262 |
+
```
|
263 |
+
# Acknowledgements
|
264 |
+
|
265 |
+
This model has been promoted and financed by the Government of Catalonia through the Aina project.
|
266 |
+
|