File size: 11,563 Bytes
b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 6272b9b b1c669d 300039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
from re import search
from shutil import disk_usage
from subprocess import PIPE, Popen, STDOUT, run
import gradio as gr
from requests import get as requests_get, head as requests_head
from modules import script_callbacks, sd_models, shared
from modules.paths_internal import data_path
DL_COMMAND = 'wget -nv -t 10 --show-progress --progress=bar:force -q --content-disposition "{link}" -P {dl_path}'
WEBUI_ROOT = Path(data_path)
LINKS_FILE = WEBUI_ROOT / 'links.txt'
MODELS_FOLDER_PATH = Path(sd_models.model_path)
LORAS_FOLDER_PATH = Path(shared.cmd_opts.lora_dir)
EMBEDDINGS_FOLDER_PATH = Path(shared.cmd_opts.embeddings_dir)
CIVITAI_TOKEN = '542c1d6077168822e1b49e30e3437a5d'
def del_null_model():
null_model_path = MODELS_FOLDER_PATH / 'nullModel.ckpt'
if null_model_path.exists():
try:
null_model_path.unlink(missing_ok=True)
except:
pass
def find_mount_point():
path = Path(__file__).resolve()
while not path.is_mount():
path = path.parent
return path
def free_space():
total, used, free = disk_usage(find_mount_point())
power = 2 ** 10
n = 0
power_labels = {0: '', 1: 'Кило', 2: 'Мега', 3: 'Гига', 4: 'Тера'}
while free > power:
free /= power
n += 1
return f'{free:.2f} {power_labels[n]}байт'
def extract_url(command_eith_url):
pattern = r'["\']?((?:https?|ftp|ftps)://[^\s"\'<>]+)["\']?'
match = search(pattern, command_eith_url)
return match.group(1) if match else None
def hf_size(url: str) -> int:
try:
modified_url = url.replace('resolve', 'raw')
response = requests_get(modified_url, timeout=10)
response.raise_for_status()
content = response.text
size_str = content.split('size')[-1].strip().split()[0]
return int(size_str) if size_str.isdigit() else 0
except:
return 0
def cv_size(url: str) -> int:
try:
model_version_id = url.split('/')[-1]
response = requests_get(f'https://civitai.com/api/v1/model-versions/{model_version_id}?token={CIVITAI_TOKEN}', timeout=10)
response.raise_for_status()
files = response.json().get('files', [])
if files:
size_kb = files[0].get('sizeKB', 0)
return int(size_kb * 1024)
return 0
except:
return 0
def get_file_size(command_with_url: str) -> int:
url = extract_url(command_with_url)
if not url:
print(f'в строке `{command_with_url}` ссылка не найдена')
return 0
file_size = 0
if 'huggingface' in url:
file_size = hf_size(url)
elif 'civitai' in url:
file_size = cv_size(url)
if file_size:
return file_size
try:
response = requests_head(url, allow_redirects=True, timeout=10)
response.raise_for_status()
content_length = response.headers.get('Content-Length')
if content_length and content_length.isdigit():
return int(content_length)
content_disposition = response.headers.get('Content-Disposition')
if content_disposition:
size_str = next((part.split('=')[1] for part in content_disposition.split(';') if 'size' in part), None)
if size_str and size_str.isdigit():
return int(size_str)
except Exception:
pass
try:
result = run(['curl', '-sI', url], capture_output=True, text=True)
if result.returncode == 0:
for line in result.stdout.splitlines():
if 'Content-Length' in line:
return int(line.split(':')[1].strip())
except Exception:
pass
try:
result = run(['wget', '--spider', '--server-response', url], capture_output=True, text=True)
if result.returncode == 0:
for line in result.stderr.splitlines():
if 'Content-Length' in line:
return int(line.split(':')[1].strip())
except Exception:
pass
return 0
def get_total_file_size(urls: list):
total_file_size = 0
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
futures = [executor.submit(get_file_size, url) for url in urls]
for future in as_completed(futures):
total_file_size += future.result()
return total_file_size
def bytes_convert(size_bytes):
if size_bytes >= 1073741824:
return f'{round(size_bytes / 1073741824, 2)} Гб'
else:
return f'{round(size_bytes / 1048576, 2)} Мб'
def get_own_links(ownmodels, ownloras, ownembeddings):
dl_commands = []
for text, dlpath in zip([ownmodels, ownloras, ownembeddings], [MODELS_FOLDER_PATH, LORAS_FOLDER_PATH, EMBEDDINGS_FOLDER_PATH]):
lines = text.split('\n')
for line in lines:
if line.strip():
link = line.strip() + (f"?token={CIVITAI_TOKEN}" if "?" not in line else f"&token={CIVITAI_TOKEN}") if "civitai" in line else line.strip()
dl_command = DL_COMMAND.format(link=link, dl_path=dlpath.resolve().as_posix())
dl_commands.append(dl_command)
LINKS_FILE.write_text('\n'.join(dl_commands).strip(), encoding='utf-8')
print('список загрузки сформирован...')
def get_models_paths():
file_paths = []
for file in MODELS_FOLDER_PATH.rglob('*'):
if file.is_file():
file_paths.append(file.resolve().as_posix())
return '\n'.join(file_paths)
def del_models(inputs):
files_to_delete = inputs.split('\n')
for file in files_to_delete:
if file and file != 'None':
try:
(MODELS_FOLDER_PATH / file).unlink()
print(f'успешно удалена модель: {file}')
except OSError as e:
print(f'ОШИБКА: {e.filename} - {e.strerror}.')
else:
print('удалять нечего, или ничего не выбрано для удаления')
def downloader(command_with_url):
process = Popen(command_with_url, shell=True, stdout=PIPE, stderr=STDOUT)
while True:
output = process.stdout.readline().decode('utf-8')
if output == '' and process.poll() is not None:
break
if output:
yield output.strip()
return process.poll()
def parallel_download(command_with_url):
with ThreadPoolExecutor(max_workers=len(command_with_url)) as executor:
futures = [executor.submit(downloader, url) for url in command_with_url]
for future in as_completed(futures):
for line in future.result():
print(line)
def on_ui_tabs():
with gr.Blocks() as models_list:
gr.HTML(
'<div class="models_top_container"><div class="models_top_header_text"><h1 class="models_dl_header">выбор и скачивание моделей</h1><p>учитывай весьма ограниченное пространство на диске в колабе!</p></div><div class="freespaceinfo"><div id="frespace_output"><span>свободно в колабе: <span id="frespace_out">нажми на кнопочку</span></div><div id="freespace_get"></div></div></div>')
gr.HTML('<div class="ownfiles_header"><h2>здесь можно указать прямые ссылки на загрузку моделей, лор и внедрений</h2></div>')
with gr.Row():
plhd = 'вставляй каждую ссылку с новой строки!\nпримеры ссылок:\nhttps://models.tensorplay.ai/104249\nhttps://civitai.com/api/download/models/110660\nhttps://huggingface.co/2ch/gay/resolve/main/lora/BettercocksFlaccid.safetensors'
ownmodels = gr.Textbox(label="модели", placeholder=plhd, info="прямые ссылки на Checkpoints", lines=5, elem_id="ownmodels")
ownloras = gr.Textbox(label="лоры", placeholder=plhd, info="прямые ссылки на LoRas", lines=5, elem_id="ownloras")
ownembeddings = gr.Textbox(label="внедрения", placeholder=plhd, info="прямые ссылки на Textual Inversions", lines=5, elem_id="ownembeddings")
download_button = gr.Button('запустить загрузку', elem_id='general_download_button')
button = gr.Button('скачать по ссылкам', elem_id='ownlinks_download_button')
button.click(get_own_links, inputs=[ownmodels, ownloras, ownembeddings])
download_button = gr.Button('скачать модели', elem_id='checkboxes_download_button')
def start_download():
try:
urls = LINKS_FILE.read_text(encoding='utf-8').splitlines()
LINKS_FILE.unlink(missing_ok=True)
total_file_size = get_total_file_size(urls)
total, used, free = disk_usage(find_mount_point())
if total_file_size <= (free - 1073741824):
print(f'загрузка {bytes_convert(total_file_size)} уже началась, жди!')
parallel_download(urls)
del_null_model()
return 'функция загрузки завершила работу!'
else:
msg = f'слишком много файлов! ты пытаешься скачать {bytes_convert(total_file_size)}, имея свободных только {bytes_convert(free)} (и как минимум 1 Гб должен оставаться не занятым на диске!).'
print(msg)
return msg
except Exception as e:
print(f'ОШИБКА: {e}')
return f'ОШИБКА: {e}'
dl_result_box = gr.Textbox(label='', elem_id='dlresultbox')
download_button.click(start_download, outputs=dl_result_box)
gr.HTML('<div class="downloads_result_container"><div class="models_porgress_loader"></div><div id="downloads_start_text">задача по загрузке запущена, подробности в выводе ячейки в колабе...</div><div id="downloads_result_text"><span class="finish_dl_func"></span><span class="dl_progress_info"></span></div></div>')
space_textbox = gr.Textbox(label="", elem_id="free_space_area")
space_button = gr.Button("проверить свободное место", elem_id="free_space_button")
space_button.click(fn=free_space, outputs=space_textbox)
gr.HTML('<hr class="divider"/><div id="filemanager"><h2 class="current_models_files">файлы моделей которые можно удалить для освобождения места:</h2><div id="files_checkbox"></div><div class="filebuttons"><div id="delete_files_button"></div><div id="refresh_files_button"></div></div></div>')
files_textbox = gr.Textbox(label='', elem_id='files_area')
files_button = gr.Button('установленные модели', elem_id='files_button')
files_button.click(fn=get_models_paths, outputs=files_textbox)
delete_textbox = gr.Textbox(label='', elem_id='delete_area')
delete_button = gr.Button('удалить', elem_id='delete_button')
delete_button.click(fn=del_models, inputs=delete_textbox, outputs=delete_textbox)
return (models_list, 'модели', 'models_list'),
script_callbacks.on_ui_tabs(on_ui_tabs)
|