Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
datasets:
|
5 |
+
- mnli
|
6 |
+
- anli
|
7 |
+
- fever
|
8 |
+
- wanli
|
9 |
+
- ling
|
10 |
+
- amazonpolarity
|
11 |
+
- imdb
|
12 |
+
- appreviews
|
13 |
+
inference: false
|
14 |
+
pipeline_tag: zero-shot-classification
|
15 |
+
tags:
|
16 |
+
- NLI
|
17 |
+
- deberta-v3
|
18 |
+
license: mit
|
19 |
+
---
|
20 |
+
|
21 |
+
# ONNX version of MoritzLaurer/deberta-v3-base-zeroshot-v1
|
22 |
+
|
23 |
+
**This model is a conversion of [MoritzLaurer/deberta-v3-base-zeroshot-v1](https://huggingface.co/MoritzLaurer/deberta-v3-base-zeroshot-v1) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
|
24 |
+
|
25 |
+
`MoritzLaurer/deberta-v3-large-zeroshot-v1` is designed for zero-shot classification, capable of determining whether a hypothesis is `true` or `not_true` based on a text, a format based on Natural Language Inference (NLI).
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
|
30 |
+
|
31 |
+
```python
|
32 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
33 |
+
from transformers import AutoTokenizer, pipeline
|
34 |
+
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx")
|
37 |
+
model = ORTModelForSequenceClassification.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx")
|
38 |
+
classifier = pipeline(
|
39 |
+
task="zero-shot-classification",
|
40 |
+
model=model,
|
41 |
+
tokenizer=tokenizer,
|
42 |
+
top_k=None,
|
43 |
+
)
|
44 |
+
|
45 |
+
classifier_output = classifier("Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.", ["mobile", "website", "billing", "account access"])
|
46 |
+
print(classifier_output)
|
47 |
+
```
|