--- base_model: mesolitica/malaysian-mistral-7b-32k-instructions-v2 inference: false model_creator: mesolitica model_name: Malaysian Mistral 7B 32k Instructions v2 model_type: mistral pipeline_tag: text-generation prompt_template: '[INST] {prompt} [/INST] ' quantized_by: prsyahmi tags: - finetuned --- # Malaysian Mistral 7B 32k Instructions - GGUF - Model creator: [mesolotica](https://huggingface.co/mesolitica) - Original model: [Malaysian Mistral 7B 32k Instructions v2](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions-v2) ## Pengenalan Repo ini mengandungi model berformat GGUF untuk [mesolitica's Malaysian Mistral 7B 32k Instructions v2](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions-v2). GGUF adalah format kepada llama.cpp yang dibangunkan menggunakan C/C++ dimana pergantungan dengan software/library lain kurang menjadikan aplikasi ini ringan berbanding rata-rata aplikasi python. ## Prompt template: Mistral ``` [INST] {prompt} [/INST] ``` ## Fail yang diberikan | Nama | Kaedah Quant | Saiz Fail | | ---- | ---- | ---- | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q2_K.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q2_K.gguf) | Q2_K | 2.86 GB | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q3_K_M.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q3_K_M.gguf) | Q3_K_M | 3.27 GB | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q4_K_S.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q4_K_S.gguf) | Q4_K_S | 3.86 GB | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q4_K_M.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q4_K_M.gguf) | Q4_K_M | 4.06 GB | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q5_K_M.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q5_K_M.gguf) | Q5_K_M | 4.77 GB | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q6_K.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.Q6_K.gguf) | Q6_K | 5.53 GB | | [malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.fp16.gguf](https://huggingface.co/prsyahmi/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700-GGUF/blob/main/malaysian-mistral-7b-32k-instructions-v2-ckpt-1700.fp16.gguf) | FP16 | 13.5 GB | ## Penghargaan Terima kasih kepada Husein Zolkepli dan keseluruhan team [mesolotica](https://huggingface.co/mesolitica)! Atas jasa mereka, kita dapat menggunakan atau mencuba AI peringkat tempatan. -------