File size: 16,593 Bytes
ec009a9 e5431c4 1ff6934 738432f 1ff6934 738432f dee1ca6 1ff6934 ec009a9 4dda336 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c 6aed56b ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 8ba6aca 4add96c 8ba6aca ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c ec009a9 3701a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
---
license: mit
datasets:
- keivalya/MedQuad-MedicalQnADataset
language:
- en
library_name: adapter-transformers
metrics:
- accuracy
- bertscore
- bleu
pipeline_tag: summarization
tags:
- medical
---
# K23 MiniMed ๋ชจ๋ธ ์นด๋
K23 MiniMed๋ Krew x Huggingface 2023 ํด์ปคํค์์ ์ํ์ ๋ฉํ ์ ์ง๋ํ์ ๊ฐ๋ฐ๋ Mistral 7b Beta Medical Fine Tune ๋ชจ๋ธ์
๋๋ค.
## ๋ชจ๋ธ ์ธ๋ถ์ฌํญ
- **๊ฐ๋ฐ์:** [Tonic](https://huggingface.co/Tonic)
- **ํ์:** [Tonic](https://huggingface.co/Tonic)
- **๊ณต์ ์:** K23-Krew-Hackathon
- **๋ชจ๋ธ ์ ํ:** Mistral 7B-Beta Medical Fine Tune
- **์ธ์ด (NLP):** ์์ด
- **๋ผ์ด์ผ์ค:** MIT
- **Fine-tuning ๊ธฐ๋ฐ ๋ชจ๋ธ:** [Zephyr 7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
### ๋ชจ๋ธ ์ถ์ฒ
- **์ ์ฅ์:** [github](https://github.com/Josephrp/AI-challenge-hackathon/blob/master/mistral7b-beta_finetune.ipynb)
- **๋ฐ๋ชจ:** [pseudolab/K23MiniMed](https://huggingface.co/spaces/pseudolab/K23MiniMed)
## ์ฌ์ฉ๋ฒ
์ด ๋ชจ๋ธ์ ๊ต์ก ๋ชฉ์ ์ผ๋ก๋ง ์ํ ์ง๋ฌธ ๋ต๋ณ์ ์ํ ๋ํํ ์ ํ๋ฆฌ์ผ์ด์
์ฉ์
๋๋ค.
### ์ง์ ์ฌ์ฉ
Gradio ์ฑ๋ด ์ฑ์ ๋ง๋ค์ด ์ํ์ ์ง๋ฌธ์ ํ๊ณ ๋ํ์์ผ๋ก ๋ต๋ณ์ ๋ฐ์ต๋๋ค.
### ํ๋ฅ ์ฌ์ฉ
์ด ๋ชจ๋ธ์ ๊ต์ก์ฉ์ผ๋ก๋ง ์ฌ์ฉ๋ฉ๋๋ค. ์ถ๊ฐ์ ์ธ Fine-tuning๊ณผ ์ฌ์ฉ ์์๋ก๋ ๊ณต์ค ๋ณด๊ฑด & ์์, ๊ฐ์ธ ๋ณด๊ฑด & ์์, ์ํ Q & A๊ฐ ์์ต๋๋ค.
### ์ถ์ฒ์ฌํญ
์ฌ์ฉ ์ ์ ํญ์ ์ด ๋ชจ๋ธ์ ํ๊ฐํ๊ณ ๋ฒค์น๋งํนํ์ญ์์ค. ์ฌ์ฉ ์ ์ ํธํฅ์ ํ๊ฐํ์ญ์์ค. ๊ทธ๋๋ก ์ฌ์ฉํ์ง ๋ง์๊ณ ์ถ๊ฐ์ ์ผ๋ก Fine-tuningํ์ญ์์ค.
## ํ๋ จ ์ธ๋ถ์ฌํญ
๋ชจ๋ธ์ ํ๋ จ ์์ค์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค:
| ๋จ๊ณ | ํ๋ จ ์์ค |
|------|--------------|
| 50 | 0.993800 |
| 100 | 0.620600 |
| 150 | 0.547100 |
| 200 | 0.524100 |
| 250 | 0.520500 |
| 300 | 0.559800 |
| 350 | 0.535500 |
| 400 | 0.505400 |
### ํ๋ จ ๋ฐ์ดํฐ
๋ชจ๋ธ์ ํ์ต ๊ฐ๋ฅํ ๋งค๊ฐ๋ณ์: 21260288, ๋ชจ๋ ๋งค๊ฐ๋ณ์: 3773331456, ํ์ต ๊ฐ๋ฅํ %: 0.5634354746703705.
### ๊ฒฐ๊ณผ
global_step=400์์์ ํ๋ จ ์์ค์ 0.6008514881134033์
๋๋ค.
## ํ๊ฒฝ ์ํฅ
๋ชจ๋ธ์ ํ๊ฒฝ ์ํฅ์ ๋จธ์ ๋ฌ๋ ์ํฅ ๊ณ์ฐ๊ธฐ๋ฅผ ์ฌ์ฉํ์ฌ ๊ณ์ฐํ ์ ์์ต๋๋ค. ์ถ์ ์ ์ ๊ณตํ๊ธฐ ์ํด์๋ ๋ ๋ง์ ์ธ๋ถ ์ ๋ณด๊ฐ ํ์ํฉ๋๋ค.
## ๊ธฐ์ ์ฌ์
### ๋ชจ๋ธ ์ํคํ
์ฒ์ ๋ชฉํ
๋ชจ๋ธ์ ํน์ ์ค์ ์ ๊ฐ์ง PeftModelForCausalLM์ ์ฌ์ฉํฉ๋๋ค.
### ์ปดํจํ
์ธํ๋ผ
#### ํ๋์จ์ด
๋ชจ๋ธ์ A100 ํ๋์จ์ด์์ ํ๋ จ๋์์ต๋๋ค.
#### ์ํํธ์จ์ด
์ฌ์ฉ๋ ์ํํธ์จ์ด์๋ peft, torch, bitsandbytes, python, ๊ทธ๋ฆฌ๊ณ huggingface๊ฐ ํฌํจ๋ฉ๋๋ค.
## ๋ชจ๋ธ ์นด๋ ์์ฑ์
[Tonic](https://huggingface.co/Tonic)
## ๋ชจ๋ธ ์นด๋ ์ฐ๋ฝ์ฒ
[Tonic](https://huggingface.co/Tonic)
# Model Card for K23 MiniMed
This is a Mistral 7b Beta Medical Fine Tune with a short number of steps , inspired by [Wonhyeong Seo](https://www.huggingface.co/wseo) great mentorship during Krew x Huggingface 2023 hackathon.
## Model Details
### Model Description
- **Developed by:** [Tonic](https://huggingface.co/Tonic)
- **Funded by [optional]:** [Tonic](https://huggingface.co/Tonic)
- **Shared by [optional]:** K23-Krew-Hackathon
- **Model type:** Mistral 7B-Beta Medical Fine Tune
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model [optional]:** [Zephyr 7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
### Model Sources [optional]
- **Repository:** [github](https://github.com/Josephrp/AI-challenge-hackathon/blob/master/mistral7b-beta_finetune.ipynb)
- **Demo [optional]:** [pseudolab/K23MiniMed](https://huggingface.co/spaces/pseudolab/K23MiniMed)
## Uses
Use this model for conversational applications for medical question and answering **for educational purposes only** !
### Direct Use
Make a gradio chatbot app to ask medical questions and get answers conversationaly.
### Downstream Use [optional]
This model is **for educational use only** .
Further fine tunes and uses would include :
- public health & sanitation
- personal health & sanitation
- medical Q & A
### Recommendations
- always evaluate this model before use
- always benchmark this model before use
- always evaluate bias before use
- do not use as is, fine tune further
## How to Get Started with the Model
Use the code below to get started with the model.
```Python
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import random
from textwrap import wrap
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
base_model_id = "HuggingFaceH4/zephyr-7b-beta"
model_directory = "pseudolab/K23_MiniMed"
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)
# Load the PEFT model with the specified configuration
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("pseudolab/K23_MiniMed")
peft_model = MistralForCausalLM.from_pretrained("https://huggingface.co/HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed")
class ChatBot:
def __init__(self):
self.history = []
class ChatBot:
def __init__(self):
# Initialize the ChatBot class with an empty history
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
# Combine the user's input with the system prompt
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
# Encode the formatted input using the tokenizer
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
# Generate a response using the PEFT model
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text # Return the generated response
bot = ChatBot()
title = "๐๐ปํ ๋์ ๋ฏธ์คํธ๋๋ฉ๋ ์ฑํ
์ ์ค์ ๊ฒ์ ํ์ํฉ๋๋ค๐๐๐ปWelcome to Tonic's MistralMed Chat๐"
description = "์ด ๊ณต๊ฐ์ ์ฌ์ฉํ์ฌ ํ์ฌ ๋ชจ๋ธ์ ํ
์คํธํ ์ ์์ต๋๋ค. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) ๋๋ ์ด ๊ณต๊ฐ์ ๋ณต์ ํ๊ณ ๋ก์ปฌ ๋๋ ๐คHuggingFace์์ ์ฌ์ฉํ ์ ์์ต๋๋ค. [Discord์์ ํจ๊ป ๋ง๋ค๊ธฐ ์ํด Discord์ ๊ฐ์
ํ์ญ์์ค](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on ๐คHuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="ParityError/Anime"
)
iface.launch()
```
## Training Details
| Step | Training Loss |
|------|--------------|
| 50 | 0.993800 |
| 100 | 0.620600 |
| 150 | 0.547100 |
| 200 | 0.524100 |
| 250 | 0.520500 |
| 300 | 0.559800 |
| 350 | 0.535500 |
| 400 | 0.505400 |
### Training Data
```json
{trainable params: 21260288 || all params: 3773331456 || trainable%: 0.5634354746703705}
```
### Training Procedure
#### Preprocessing [optional]
Lora32bits
#### Speeds, Sizes, Times [optional]
```json
metrics={'train_runtime': 1700.1608, 'train_samples_per_second': 1.882, 'train_steps_per_second': 0.235, 'total_flos': 9.585300996096e+16, 'train_loss': 0.6008514881134033, 'epoch': 0.2})
```
### Results
```json
TrainOutput
global_step=400, training_loss=0.6008514881134033
```
#### Summary
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** {{ hardware | default("[More Information Needed]", true)}}
- **Hours used:** {{ hours_used | default("[More Information Needed]", true)}}
- **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}}
- **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}}
- **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}}
## Technical Specifications
### Model Architecture and Objective
```python
PeftModelForCausalLM(
(base_model): LoraModel(
(model): MistralForCausalLM(
(model): MistralModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-31): 32 x MistralDecoderLayer(
(self_attn): MistralAttention(
(q_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
)
(k_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
)
(v_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
)
(o_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): MistralMLP(
(gate_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=14336, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=14336, bias=False)
)
(up_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=14336, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=14336, bias=False)
)
(down_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=14336, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=14336, out_features=4096, bias=False)
)
(act_fn): SiLUActivation()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
)
(lm_head): Linear(
in_features=4096, out_features=32000, bias=False
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=32000, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
)
)
)
```
### Compute Infrastructure
#### Hardware
A100
#### Software
peft , torch, bitsandbytes, python, huggingface
## Model Card Authors [optional]
[Tonic](https://huggingface.co/Tonic)
## Model Card Contact
[Tonic](https://huggingface.co/Tonic) |