---
base_model: pszemraj/llama-3-prune_8
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3-6.3b-v0.1
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: pszemraj/llama-3-prune_8
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
strict: false
seed: 80085
# dataset
datasets:
- path: BEE-spoke-data/KI-smorgasbord_fw-small
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Llama-3-6.3b-v0.1
hub_model_id: pszemraj/Llama-3-6.3b-v0.1
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 4e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true
flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-6.3b
logging_steps: 8
deepspeed:
special_tokens:
pad_token: <|end_of_text|>
```
# Llama-3-6.3b-v0.1
This model is a fine-tuned version of [pszemraj/llama-3-prune_8](https://huggingface.co/pszemraj/llama-3-prune_8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2702
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 129
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0006 | 1 | 7.8100 |
| 2.2782 | 0.2002 | 320 | 2.3728 |
| 2.2699 | 0.4004 | 640 | 2.3265 |
| 2.3761 | 0.6006 | 960 | 2.2849 |
| 2.2448 | 0.8008 | 1280 | 2.2702 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1