--- base_model: pszemraj/llama-3-prune_8 tags: - axolotl - generated_from_trainer model-index: - name: Llama-3-6.3b-v0.1 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: pszemraj/llama-3-prune_8 model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer strict: false seed: 80085 # dataset datasets: - path: BEE-spoke-data/KI-smorgasbord_fw-small type: completion # format from earlier field: text # Optional[str] default: text, field to use for completion data val_set_size: 0.015 sequence_len: 4096 sample_packing: true pad_to_sequence_len: false train_on_inputs: false group_by_length: false # WANDB wandb_project: llama3-pruning wandb_entity: pszemraj wandb_watch: gradients wandb_name: Llama-3-6.3b-v0.1 hub_model_id: pszemraj/Llama-3-6.3b-v0.1 hub_strategy: every_save gradient_accumulation_steps: 16 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch_fused # paged_adamw_32bit weight_decay: 0.05 lr_scheduler: cosine learning_rate: 4e-5 warmup_ratio: 0.1 load_in_8bit: false load_in_4bit: false bfloat16: true tf32: true flash_attention: true torch_compile: true # requires >= torch 2.0, may sometimes cause problems torch_compile_backend: inductor # Optional[str] gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false # hyperparams for freq of evals, saving, etc evals_per_epoch: 5 saves_per_epoch: 3 save_safetensors: true save_total_limit: 1 output_dir: ./output-axolotl/output-model-6.3b logging_steps: 8 deepspeed: special_tokens: pad_token: <|end_of_text|> ```

# Llama-3-6.3b-v0.1 This model is a fine-tuned version of [pszemraj/llama-3-prune_8](https://huggingface.co/pszemraj/llama-3-prune_8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 80085 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 129 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 7.8100 | | 2.2782 | 0.2002 | 320 | 2.3728 | | 2.2699 | 0.4004 | 640 | 2.3265 | | 2.3761 | 0.6006 | 960 | 2.2849 | | 2.2448 | 0.8008 | 1280 | 2.2702 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1