Update README.md
Browse files
README.md
CHANGED
@@ -33,6 +33,7 @@ from huggingface_hub import hf_hub_download
|
|
33 |
|
34 |
model_repo_name = "pszemraj/deberta-v3-small-sp500-edgar-10k"
|
35 |
pipe = pipeline("text-classification", model=model_repo_name)
|
|
|
36 |
|
37 |
# Download the regression_config.json file
|
38 |
regression_config_path = hf_hub_download(
|
@@ -41,23 +42,26 @@ regression_config_path = hf_hub_download(
|
|
41 |
with open(regression_config_path, "r") as f:
|
42 |
regression_config = json.load(f)
|
43 |
|
|
|
44 |
def inverse_scale(prediction, config):
|
45 |
"""apply inverse scaling to a prediction"""
|
46 |
min_value, max_value = config["min_value"], config["max_value"]
|
47 |
return prediction * (max_value - min_value) + min_value
|
48 |
|
|
|
49 |
def predict_with_pipeline(text, pipe, config, ndigits=4):
|
50 |
-
result = pipe(text)[0] # Get the first (and likely only) result
|
51 |
-
score = result[
|
52 |
# Apply inverse scaling
|
53 |
scaled_score = inverse_scale(score, config)
|
54 |
return round(scaled_score, ndigits)
|
55 |
|
|
|
56 |
text = "This is an example text for regression prediction."
|
57 |
|
58 |
# Get predictions
|
59 |
predictions = predict_with_pipeline(text, pipe, regression_config)
|
60 |
-
print("Predicted
|
61 |
```
|
62 |
|
63 |
</details>
|
|
|
33 |
|
34 |
model_repo_name = "pszemraj/deberta-v3-small-sp500-edgar-10k"
|
35 |
pipe = pipeline("text-classification", model=model_repo_name)
|
36 |
+
pipe.tokenizer.model_max_length = 1024
|
37 |
|
38 |
# Download the regression_config.json file
|
39 |
regression_config_path = hf_hub_download(
|
|
|
42 |
with open(regression_config_path, "r") as f:
|
43 |
regression_config = json.load(f)
|
44 |
|
45 |
+
|
46 |
def inverse_scale(prediction, config):
|
47 |
"""apply inverse scaling to a prediction"""
|
48 |
min_value, max_value = config["min_value"], config["max_value"]
|
49 |
return prediction * (max_value - min_value) + min_value
|
50 |
|
51 |
+
|
52 |
def predict_with_pipeline(text, pipe, config, ndigits=4):
|
53 |
+
result = pipe(text, truncation=True)[0] # Get the first (and likely only) result
|
54 |
+
score = result["score"] if result["label"] == "LABEL_1" else 1 - result["score"]
|
55 |
# Apply inverse scaling
|
56 |
scaled_score = inverse_scale(score, config)
|
57 |
return round(scaled_score, ndigits)
|
58 |
|
59 |
+
|
60 |
text = "This is an example text for regression prediction."
|
61 |
|
62 |
# Get predictions
|
63 |
predictions = predict_with_pipeline(text, pipe, regression_config)
|
64 |
+
print("Predicted returns (frec):", predictions)
|
65 |
```
|
66 |
|
67 |
</details>
|