pszemraj commited on
Commit
77f7907
·
1 Parent(s): 0d46110

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -23,10 +23,12 @@ Below is an example and a set of functions to compute the cosine similarity betw
23
 
24
  ### load_model_and_tokenizer
25
 
 
 
 
26
  <details>
27
  <summary><b>Details</b></summary>
28
 
29
- loads the model and tokenizer based on `model_name`. It returns a tuple containing the loaded model and tokenizer.
30
 
31
  ```python
32
  from typing import List, Tuple
@@ -161,11 +163,11 @@ embeddings = get_embeddings(model, tokenizer, texts)
161
  calculate_cosine_similarity(embeddings, texts)
162
  ```
163
 
164
- This will print the cosine similarity between the first text and all other texts in the `texts` list.
165
 
166
  ## References
167
 
168
- This guide is based on the examples provided in the [sGPT repository](https://github.com/Muennighoff/sgpt#symmetric-semantic-search-be).
169
 
170
  ```
171
  @article{muennighoff2022sgpt,
 
23
 
24
  ### load_model_and_tokenizer
25
 
26
+ Loads the model and tokenizer based on `model_name`, returning a tuple containing the loaded model and tokenizer.
27
+
28
+
29
  <details>
30
  <summary><b>Details</b></summary>
31
 
 
32
 
33
  ```python
34
  from typing import List, Tuple
 
163
  calculate_cosine_similarity(embeddings, texts)
164
  ```
165
 
166
+ This will print the cosine similarity between the first text and all other texts in the `texts' list.
167
 
168
  ## References
169
 
170
+ Inference with this model/the example is based on the ideas and examples in the [SGPT repository](https://github.com/Muennighoff/sgpt#symmetric-semantic-search-be).
171
 
172
  ```
173
  @article{muennighoff2022sgpt,