--- license: cc-by-nc-sa-4.0 tags: - grammar - spelling - punctuation - error-correction - grammar synthesis datasets: - jfleg widget: - text: "i can has cheezburger" example_title: "cheezburger" - text: "There car broke down so their hitching a ride to they're class." example_title: "compound-1" - text: "so em if we have an now so with fito ringina know how to estimate the tren given the ereafte mylite trend we can also em an estimate is nod s i again tort watfettering an we have estimated the trend an called wot to be called sthat of exty right now we can and look at wy this should not hare a trend i becan we just remove the trend an and we can we now estimate tesees ona effect of them exty" example_title: "Transcribed Audio Example 2" - text: "My coworker said he used a financial planner to help choose his stocks so he wouldn't loose money." example_title: "incorrect word choice (context)" - text: "good so hve on an tadley i'm not able to make it to the exla session on monday this week e which is why i am e recording pre recording an this excelleision and so to day i want e to talk about two things and first of all em i wont em wene give a summary er about ta ohow to remove trents in these nalitives from time series" example_title: "lowercased audio transcription output" - text: "Frustrated, the chairs took me forever to set up." example_title: "dangling modifier" - text: "I would like a peice of pie." example_title: "miss-spelling" - text: "Which part of Zurich was you going to go hiking in when we were there for the first time together? ! ?" example_title: "chatbot on Zurich" parameters: max_length: 128 min_length: 4 num_beams: 4 repetition_penalty: 1.21 length_penalty: 1 early_stopping: True --- # grammar-synthesis-large - beta A fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) for grammar correction on an expanded version of the [JFLEG](https://paperswithcode.com/dataset/jfleg) dataset. usage in Python (after `pip install transformers`): ``` from transformers import pipeline corrector = pipeline( 'text2text-generation', 'pszemraj/grammar-synthesis-large', ) raw_text = 'i can has cheezburger' results = corrector(raw_text) print(results) ``` give it a spin in Colab at [this notebook](https://colab.research.google.com/gist/pszemraj/9b810e38a4d3bc766834df921818d782/scratchpad.ipynb) ## Model description The intent is to create a text2text language model that successfully completes "single-shot grammar correction" on a potentially grammatically incorrect text **that could have a lot of mistakes** with the important qualifier of **it does not semantically change text/information that IS grammatically correct.** Compare some of the heavier-error examples on [other grammar correction models](https://huggingface.co/models?dataset=dataset:jfleg) to see the difference :) ## Limitations - dataset: `cc-by-nc-sa-4.0` - model: `apache-2.0` - this is **still a work-in-progress** and while probably useful for "single-shot grammar correction" in a lot of cases, **give the outputs a glance for correctness ok?** ## Use Cases Obviously, this section is quite general as there are many things one can use "general single-shot grammar correction" for. Some ideas or use cases: 1. Correcting highly error-prone LM outputs. Some examples would be audio transcription (ASR) (this is literally some of the examples) or something like handwriting OCR. - To be investigated further, depending on what model/system is used it _might_ be worth it to apply this after OCR on typed characters. 2. Correcting/infilling text generated by text generation models to be cohesive/remove obvious errors that break the conversation immersion. I use this on the outputs of [this OPT 2.7B chatbot-esque model of myself](https://huggingface.co/pszemraj/opt-peter-2.7B). > An example of this model running on CPU with beam search: ``` original response: ive heard it attributed to a bunch of different philosophical schools, including stoicism, pragmatism, existentialism and even some forms of post-structuralism. i think one of the most interesting (and most difficult) philosophical problems is trying to let dogs (or other animals) out of cages. the reason why this is a difficult problem is because it seems to go against our grain (so to synthesizing took 306.12 seconds Final response in 1294.857 s: I've heard it attributed to a bunch of different philosophical schools, including solipsism, pragmatism, existentialism and even some forms of post-structuralism. i think one of the most interesting (and most difficult) philosophical problems is trying to let dogs (or other animals) out of cages. the reason why this is a difficult problem is because it seems to go against our grain (so to speak) ``` _Note: that I have some other logic that removes any periods at the end of the final sentence in this chatbot setting [to avoid coming off as passive aggressive](https://www.npr.org/2020/09/05/909969004/before-texting-your-kid-make-sure-to-double-check-your-punctuation)_ 3. Somewhat related to #2 above, fixing/correcting so-called [tortured-phrases](https://arxiv.org/abs/2107.06751) that are dead giveaways text was generated by a language model. _Note that _SOME_ of these are not fixed, especially as they venture into domain-specific terminology (i.e. irregular timberland instead of Random Forest)._ ## Training and evaluation data More information needed 😉 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1