Delete README.md
Browse files
README.md
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: google/long-t5-tglobal-base
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
- synthsumm
|
7 |
-
metrics:
|
8 |
-
- rouge
|
9 |
-
datasets:
|
10 |
-
- pszemraj/synthsumm
|
11 |
-
language:
|
12 |
-
- en
|
13 |
-
pipeline_tag: summarization
|
14 |
-
---
|
15 |
-
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
-
|
19 |
-
# long-t5-tglobal-base-synthsumm_direct
|
20 |
-
|
21 |
-
Fine-tuned on a synthetic dataset of curated long-context text and `GPT-3.5-turbo-1106` summaries spanning multiple domains, including "random" long-context examples from redpajama, the pile, etc.
|
22 |
-
|
23 |
-
- Note: this model has **not** been fine-tuned on any other summarization datasets, just the `synthsumm` data
|
24 |
-
|
25 |
-
Try it out in the [gradio demo](https://huggingface.co/spaces/pszemraj/document-summarization)
|
26 |
-
|
27 |
-
## Model description
|
28 |
-
|
29 |
-
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the None dataset.
|
30 |
-
It achieves the following results on the evaluation set:
|
31 |
-
- Loss: 1.4378
|
32 |
-
- Rouge1: 48.0918
|
33 |
-
- Rouge2: 21.2531
|
34 |
-
- Rougel: 34.4307
|
35 |
-
- Rougelsum: 43.0271
|
36 |
-
- Gen Len: 84.5231
|
37 |
-
|
38 |
-
|
39 |
-
## Training procedure
|
40 |
-
|
41 |
-
### Training hyperparameters
|
42 |
-
|
43 |
-
The following hyperparameters were used during training:
|
44 |
-
- learning_rate: 0.0003
|
45 |
-
- train_batch_size: 1
|
46 |
-
- eval_batch_size: 1
|
47 |
-
- seed: 26605
|
48 |
-
- gradient_accumulation_steps: 8
|
49 |
-
- total_train_batch_size: 8
|
50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type: inverse_sqrt
|
52 |
-
- lr_scheduler_warmup_ratio: 0.03
|
53 |
-
- num_epochs: 2.0
|
54 |
-
|
55 |
-
### Training results
|
56 |
-
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
58 |
-
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
|
59 |
-
| 1.9183 | 0.38 | 125 | 1.5762 | 38.7221 | 15.0873 | 28.3123 | 34.9655 | 129.2154 |
|
60 |
-
| 1.8815 | 0.77 | 250 | 1.5230 | 44.3531 | 17.9384 | 31.7417 | 39.5563 | 87.3538 |
|
61 |
-
| 1.7264 | 1.15 | 375 | 1.4735 | 45.7781 | 20.102 | 33.329 | 41.4737 | 101.9231 |
|
62 |
-
| 1.8545 | 1.54 | 500 | 1.4505 | 47.0134 | 20.6159 | 33.6118 | 41.6579 | 88.2308 |
|
63 |
-
| 1.7444 | 1.92 | 625 | 1.4378 | 48.0918 | 21.2531 | 34.4307 | 43.0271 | 84.5231 |
|
64 |
-
|
65 |
-
|
66 |
-
### Framework versions
|
67 |
-
|
68 |
-
- Transformers 4.36.0.dev0
|
69 |
-
- Pytorch 2.1.0
|
70 |
-
- Datasets 2.15.0
|
71 |
-
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|