---
license: cc-by-sa-4.0
base_model: pszemraj/stablelm-3b-4e1t-prune10
tags:
- axolotl
- generated_from_trainer
model-index:
- name: stablelm-4e1t-2b-v0.1
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: pszemraj/stablelm-3b-4e1t-prune10
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
strict: false
seed: 80085
# dataset
datasets:
- path: BEE-spoke-data/KI-smorgasbord_fw-small
type: completion # format from earlier
field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false
# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: stablelm-4e1t-2b-v0.1
hub_model_id: pszemraj/stablelm-4e1t-2b-v0.1
hub_strategy: every_save
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 5e-5
warmup_ratio: 0.1
load_in_8bit: false
load_in_4bit: false
bf16: true
tf32: true
flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-2b
logging_steps: 8
deepspeed:
special_tokens:
pad_token: <|end_of_text|>
```
# stablelm-4e1t-2b-v0.1
This model is a fine-tuned version of [pszemraj/stablelm-3b-4e1t-prune10](https://huggingface.co/pszemraj/stablelm-3b-4e1t-prune10) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 268
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0006 | 1 | 4.4344 |
| 2.6558 | 0.2004 | 332 | 2.7150 |
| 2.6548 | 0.4007 | 664 | 2.6196 |
| 2.5435 | 0.6011 | 996 | 2.5981 |
| 2.5133 | 0.8014 | 1328 | 2.5502 |
| 2.489 | 1.0018 | 1660 | 2.5106 |
| 2.2671 | 1.1898 | 1992 | 2.4944 |
| 2.2038 | 1.3902 | 2324 | 2.4843 |
| 2.2513 | 1.5905 | 2656 | 2.4761 |
| 2.1654 | 1.7909 | 2988 | 2.4769 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1