--- license: cc-by-sa-4.0 base_model: pszemraj/stablelm-3b-4e1t-prune10 tags: - axolotl - generated_from_trainer model-index: - name: stablelm-4e1t-2b-v0.1 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: pszemraj/stablelm-3b-4e1t-prune10 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer strict: false seed: 80085 # dataset datasets: - path: BEE-spoke-data/KI-smorgasbord_fw-small type: completion # format from earlier field: text # Optional[str] default: text, field to use for completion data val_set_size: 0.015 sequence_len: 4096 sample_packing: true pad_to_sequence_len: false train_on_inputs: false group_by_length: false # WANDB wandb_project: llama3-pruning wandb_entity: pszemraj wandb_watch: gradients wandb_name: stablelm-4e1t-2b-v0.1 hub_model_id: pszemraj/stablelm-4e1t-2b-v0.1 hub_strategy: every_save gradient_accumulation_steps: 16 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_torch_fused # paged_adamw_32bit weight_decay: 0.05 lr_scheduler: cosine learning_rate: 5e-5 warmup_ratio: 0.1 load_in_8bit: false load_in_4bit: false bf16: true tf32: true flash_attention: true torch_compile: true # requires >= torch 2.0, may sometimes cause problems torch_compile_backend: inductor # Optional[str] gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false # hyperparams for freq of evals, saving, etc evals_per_epoch: 5 saves_per_epoch: 3 save_safetensors: true save_total_limit: 1 output_dir: ./output-axolotl/output-model-2b logging_steps: 8 deepspeed: special_tokens: pad_token: <|end_of_text|> ```

# stablelm-4e1t-2b-v0.1 This model is a fine-tuned version of [pszemraj/stablelm-3b-4e1t-prune10](https://huggingface.co/pszemraj/stablelm-3b-4e1t-prune10) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 80085 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 268 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 4.4344 | | 2.6558 | 0.2004 | 332 | 2.7150 | | 2.6548 | 0.4007 | 664 | 2.6196 | | 2.5435 | 0.6011 | 996 | 2.5981 | | 2.5133 | 0.8014 | 1328 | 2.5502 | | 2.489 | 1.0018 | 1660 | 2.5106 | | 2.2671 | 1.1898 | 1992 | 2.4944 | | 2.2038 | 1.3902 | 2324 | 2.4843 | | 2.2513 | 1.5905 | 2656 | 2.4761 | | 2.1654 | 1.7909 | 2988 | 2.4769 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1