File size: 3,335 Bytes
4528cc7
 
e4b109a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: pszemraj/tFINE-850m-24x24-v0.4-flan_aug
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: tFINE-850m-24x24-v0.4-flan_aug-infinity-instruct-7m-T2T_en-1024-v5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tFINE-850m-24x24-v0.4-flan_aug-infinity-instruct-7m-T2T_en-1024-v5

This model is a fine-tuned version of [pszemraj/tFINE-850m-24x24-v0.4-flan_aug](https://huggingface.co/pszemraj/tFINE-850m-24x24-v0.4-flan_aug) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1526
- Rouge1: 40.1804
- Rouge2: 23.1008
- Rougel: 32.3484
- Rougelsum: 38.2103
- Gen Len: 422.225
- Num Input Tokens Seen: 421585440

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 776444
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-----------------:|
| 1.8808        | 0.0807 | 1000  | 1.7883          | 24.1946 | 12.2099 | 20.4185 | 22.251    | 636.465 | 35147692          |
| 1.6545        | 0.1613 | 2000  | 1.5985          | 28.9492 | 15.3233 | 23.871  | 26.9919   | 577.04  | 70510224          |
| 1.5522        | 0.2420 | 3000  | 1.4907          | 30.4033 | 16.1354 | 24.7244 | 28.5037   | 537.77  | 105707144         |
| 1.5059        | 0.3227 | 4000  | 1.4204          | 34.0294 | 19.2608 | 27.9322 | 32.3166   | 522.495 | 140722844         |
| 1.4346        | 0.4034 | 5000  | 1.3636          | 34.4104 | 19.4149 | 28.1022 | 32.7299   | 494.68  | 175639924         |
| 1.3912        | 0.4840 | 6000  | 1.3159          | 36.5059 | 21.2447 | 30.116  | 34.7303   | 469.885 | 210409328         |
| 1.3148        | 0.5647 | 7000  | 1.2807          | 37.0123 | 21.3666 | 30.11   | 35.0891   | 458.28  | 245601908         |
| 1.2859        | 0.6454 | 8000  | 1.2492          | 37.05   | 21.0468 | 29.7988 | 35.1882   | 452.495 | 280866724         |
| 1.298         | 0.7260 | 9000  | 1.2211          | 36.6966 | 20.8189 | 29.7115 | 34.7528   | 464.37  | 316042068         |
| 1.2834        | 0.8067 | 10000 | 1.1979          | 37.7181 | 20.9926 | 30.3857 | 35.8681   | 446.26  | 351056548         |
| 1.2577        | 0.8874 | 11000 | 1.1752          | 39.3539 | 23.0123 | 31.9005 | 37.4941   | 424.445 | 386471860         |
| 1.193         | 0.9680 | 12000 | 1.1526          | 40.1804 | 23.1008 | 32.3484 | 38.2103   | 422.225 | 421585440         |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0