ptah23 commited on
Commit
99853f8
·
1 Parent(s): 4eae4d8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-small
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - google/fleurs
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: whisper-small-bn-in
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: google/fleurs
18
+ type: google/fleurs
19
+ config: bn_in
20
+ split: train+validation
21
+ args: bn_in
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.45676500508647
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # whisper-small-bn-in
32
+
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1842
36
+ - Wer: 0.4568
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: constant_with_warmup
61
+ - lr_scheduler_warmup_steps: 5
62
+ - training_steps: 2000
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
68
+ | 0.4443 | 0.53 | 100 | 0.3399 | 0.7272 |
69
+ | 0.249 | 1.07 | 200 | 0.2222 | 0.6244 |
70
+ | 0.1662 | 1.6 | 300 | 0.1778 | 0.5807 |
71
+ | 0.1221 | 2.14 | 400 | 0.1602 | 0.5397 |
72
+ | 0.0965 | 2.67 | 500 | 0.1484 | 0.5168 |
73
+ | 0.0646 | 3.21 | 600 | 0.1475 | 0.4966 |
74
+ | 0.0566 | 3.74 | 700 | 0.1420 | 0.4812 |
75
+ | 0.028 | 4.28 | 800 | 0.1511 | 0.4910 |
76
+ | 0.0325 | 4.81 | 900 | 0.1476 | 0.4766 |
77
+ | 0.0177 | 5.35 | 1000 | 0.1593 | 0.4876 |
78
+ | 0.0176 | 5.88 | 1100 | 0.1589 | 0.4715 |
79
+ | 0.0127 | 6.42 | 1200 | 0.1622 | 0.4634 |
80
+ | 0.0126 | 6.95 | 1300 | 0.1706 | 0.4673 |
81
+ | 0.0089 | 7.49 | 1400 | 0.1777 | 0.4712 |
82
+ | 0.0087 | 8.02 | 1500 | 0.1776 | 0.4666 |
83
+ | 0.0076 | 8.56 | 1600 | 0.1788 | 0.4505 |
84
+ | 0.007 | 9.09 | 1700 | 0.1906 | 0.4685 |
85
+ | 0.0057 | 9.63 | 1800 | 0.1840 | 0.4573 |
86
+ | 0.0064 | 10.16 | 1900 | 0.1841 | 0.4569 |
87
+ | 0.0057 | 10.7 | 2000 | 0.1842 | 0.4568 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.32.0.dev0
93
+ - Pytorch 1.12.1+cu116
94
+ - Datasets 2.4.0
95
+ - Tokenizers 0.12.1