File size: 1,634 Bytes
62d79d4
 
99d88f6
0597c69
 
 
99d88f6
 
62d79d4
 
 
277966c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
language: "pt"
widget:
- text: "O principal [MASK] da COVID-19 é tosse seca."
- text: "O vírus da gripe apresenta um [MASK] constituído por segmentos de ácido ribonucleico."

datasets: 
- biomedical literature from Scielo and Pubmed
thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/logo-biobertpr1.png"
---

<img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/logo-biobertpr1.png" alt="Logo BioBERTpt">

# BioBERTpt - Portuguese Clinical and Biomedical BERT

The [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) paper contains clinical and biomedical BERT-based models for Portuguese Language, initialized with BERT-Multilingual-Cased & trained on clinical notes and biomedical literature. 

This model card describes the BioBERTpt(bio) model, a biomedical version of BioBERTpt, trained on Portuguese biomedical literature from scientific papers from Pubmed and Scielo. 

## How to use the model

Load the model via the transformers library:
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("pucpr/biobertpt-bio")
model = AutoModel.from_pretrained("pucpr/biobertpt-bio")
```

## More Information

Refer to the original paper, [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) for additional details and performance on Portuguese NER tasks.

## Questions?

Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).