File size: 1,385 Bytes
e984492 0397fd1 e984492 0397fd1 e984492 0397fd1 e984492 0397fd1 e984492 0397fd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
base_model:
- meta-llama/Meta-Llama-3-70B-Instruct
library_name: peft
---
# MARTZAI: LoRA Adapter for LLaMA 70B
MARTZAI is a LoRA fine-tuned adapter for **LLaMA 70B**, trained on Chris Martz's tweets to capture his unique style and insights.
## Model Details
- **Base model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)
- **Method:** LoRA (Low-Rank Adaptation)
- **Framework:** PEFT
- **Language:** English
- **License:** [More Information Needed]
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
# Load LoRA adapter
lora_model = PeftModel.from_pretrained(base_model, "your_hf_username/llama70b-lora-adapter")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
# Generate text
input_text = "What are Chris Martz's views on inflation?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = lora_model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
## Notes
Usage: Ideal for tasks requiring Chris Martz’s tone or expertise.
Limitations: This adapter inherits biases and constraints from the base model.
Developed by sw4geth. Contact via Hugging Face for questions or feedback. |