--- base_model: - meta-llama/Meta-Llama-3-70B-Instruct library_name: peft --- # MARTZAI: LoRA Adapter for LLaMA 70B MARTZAI is a LoRA fine-tuned adapter for **LLaMA 70B**, trained on Chris Martz's tweets to capture his unique style and insights. ## Model Details - **Base model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) - **Method:** LoRA (Low-Rank Adaptation) - **Framework:** PEFT - **Language:** English - **License:** [More Information Needed] ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct") # Load LoRA adapter lora_model = PeftModel.from_pretrained(base_model, "your_hf_username/llama70b-lora-adapter") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct") # Generate text input_text = "What are Chris Martz's views on inflation?" inputs = tokenizer(input_text, return_tensors="pt") outputs = lora_model.generate(**inputs) print(tokenizer.decode(outputs[0])) ## Notes Usage: Ideal for tasks requiring Chris Martz’s tone or expertise. Limitations: This adapter inherits biases and constraints from the base model. Developed by sw4geth. Contact via Hugging Face for questions or feedback.