pushkin05 commited on
Commit
809f03a
1 Parent(s): 8f7231a

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -8.07 +/- 2.78
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -15.04 +/- 4.92
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2ca8b2e17132968ed6364f7d794a6636845b78a38b5cf647b6fb81dd7d0edbaf
3
- size 103786
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eff2e01f02cb6c5583c52a0c7581febba3c794b3494c09f790e7da2ef4182fe
3
+ size 108033
a2c-PandaReachDense-v2/data CHANGED
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 1000,
23
- "_total_timesteps": 1000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1686818510747918793,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2EczP7CMZb4Jc5s/2EczP7CMZb4Jc5s/2EczP7CMZb4Jc5s/2EczP7CMZb4Jc5s/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAww7jv40Smz9QYki+JEH7P5P6AsCY5m89O90PP7OCrr+hU7y/K7JSvTilfT9PJyE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYRzM/sIxlvglzmz+WDMM9Euz9vHAxpj3YRzM/sIxlvglzmz+WDMM9Euz9vHAxpj3YRzM/sIxlvglzmz+WDMM9Euz9vHAxpj3YRzM/sIxlvglzmz+WDMM9Euz9vHAxpj2UaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.700315 -0.2241695 1.2144481]\n [ 0.700315 -0.2241695 1.2144481]\n [ 0.700315 -0.2241695 1.2144481]\n [ 0.700315 -0.2241695 1.2144481]]",
38
- "desired_goal": "[[-1.773888 1.2115036 -0.19568753]\n [ 1.9629254 -2.0465438 0.05856952]\n [ 0.56196946 -1.3633636 -1.4713022 ]\n [-0.05143945 0.9908023 0.62950605]]",
39
- "observation": "[[ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]\n [ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]\n [ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]\n [ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPGt0vVMHmz0K/lA+k5gBPqk2xruEPAo+GBd4u6DzXz2TO6I9ubESvr3SO73mBnc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.05967258 0.07569756 0.20409408]\n [ 0.12655859 -0.006049 0.13499647]\n [-0.00378556 0.0546757 0.07921519]\n [-0.14325608 -0.04585527 0.24123725]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKxiV1AnoJ8CUhpRSlIwBbJRLMowBdJRHP+2yM1jy4F11fZQoaAZoCWgPQwjopWJjXl8kwJSGlFKUaBVLMmgWRz/pCsOoYNy6dX2UKGgGaAloD0MIHcu76gEbJMCUhpRSlGgVSzJoFkc/5W1YyO7xu3V9lChoBmgJaA9DCLhbkgN2zSnAlIaUUpRoFUsyaBZHP+GqCpWFN+N1fZQoaAZoCWgPQwg4Ef3a+lkUwJSGlFKUaBVLMmgWRz/3kWuX/o7ndX2UKGgGaAloD0MIUBcplIUvG8CUhpRSlGgVSzJoFkc/9ThxYJVsDXV9lChoBmgJaA9DCKOutfepsjDAlIaUUpRoFUsyaBZHP/NqFAVwgkl1fZQoaAZoCWgPQwhPsP86Nx0swJSGlFKUaBVLMmgWRz/xgNXo1UEQdX2UKGgGaAloD0MIIOwUqwbpMMCUhpRSlGgVSzJoFkc//9JkGzKLbnV9lChoBmgJaA9DCKUQyCWOrCHAlIaUUpRoFUsyaBZHP/18pkPMB6t1fZQoaAZoCWgPQwgsZK4Mqs0lwJSGlFKUaBVLMmgWRz/7qVY6nzg/dX2UKGgGaAloD0MIHQOy17snJsCUhpRSlGgVSzJoFkc/+b30wrUb1nV9lChoBmgJaA9DCIBIv30dKDDAlIaUUpRoFUsyaBZHQAUYHX2/SIB1fZQoaAZoCWgPQwjVzjC1pT4TwJSGlFKUaBVLMmgWR0AD7jebd8ArdX2UKGgGaAloD0MIBW1y+KTLKMCUhpRSlGgVSzJoFkdAAwXnhbW3B3V9lChoBmgJaA9DCFGDaRg+AhzAlIaUUpRoFUsyaBZHQAIRgRbr1NB1fZQoaAZoCWgPQwhsXP+uz3QtwJSGlFKUaBVLMmgWR0AMPoq0+kgwdX2UKGgGaAloD0MILSRgdHmDHMCUhpRSlGgVSzJoFkdACxbah6By0nV9lChoBmgJaA9DCPMAFvn1Gy3AlIaUUpRoFUsyaBZHQAovpY9xIat1fZQoaAZoCWgPQwj4GRcOhBwiwJSGlFKUaBVLMmgWR0AJO1UlzEJjdWUu"
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 50,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 10000,
23
+ "_total_timesteps": 10000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1686818884715529101,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkiTiPjN8+jtZjzk/kiTiPjN8+jtZjzk/kiTiPjN8+jtZjzk/kiTiPjN8+jtZjzk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwYmYv6lq5L9usNy+fcUevO2Ai78AJ2K/G9T1PhUJZj7K9L8+iKGevoxtjb/SRL2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2SJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2SJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2SJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.44168526 0.0076442 0.72484356]\n [0.44168526 0.0076442 0.72484356]\n [0.44168526 0.0076442 0.72484356]\n [0.44168526 0.0076442 0.72484356]]",
38
+ "desired_goal": "[[-1.1917039 -1.784505 -0.43103355]\n [-0.00969064 -1.089872 -0.8834076 ]\n [ 0.48013386 0.22464402 0.37491447]\n [-0.30982614 -1.1049056 -1.4786627 ]]",
39
+ "observation": "[[0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]\n [0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]\n [0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]\n [0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4YiYvYa5ZD2e+DY+AkcRPpe9g731USE+SaNivceeWD1VLo4+t0nvPRvV9Dywomk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.07447983 0.05584099 0.17868277]\n [ 0.14187244 -0.06432646 0.1575392 ]\n [-0.0553315 0.0528858 0.27769724]\n [ 0.11683982 0.02988677 0.05703992]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk8fT8gMPIMCUhpRSlIwBbJRLMowBdJRHQDD/r7fpD/l1fZQoaAZoCWgPQwjFVWXfFYEewJSGlFKUaBVLMmgWR0Aw1oRIz3yqdX2UKGgGaAloD0MIlKKVe4GpKcCUhpRSlGgVSzJoFkdAMLbA1vVEu3V9lChoBmgJaA9DCKw41VqYVSXAlIaUUpRoFUsyaBZHQDCYxnFo+Oh1fZQoaAZoCWgPQwh6ck2BzFYlwJSGlFKUaBVLMmgWR0AxghbGFSKndX2UKGgGaAloD0MIObnfoSg4KMCUhpRSlGgVSzJoFkdAMVj1oQFs6HV9lChoBmgJaA9DCFQ7w9SWaiXAlIaUUpRoFUsyaBZHQDE5Pacqe9V1fZQoaAZoCWgPQwjtuUxNgu8iwJSGlFKUaBVLMmgWR0AxG0SAYpDvdX2UKGgGaAloD0MIW3heKjbmI8CUhpRSlGgVSzJoFkdAMgOKXOW0JHV9lChoBmgJaA9DCKkwthDkMCLAlIaUUpRoFUsyaBZHQDHaTB68g6l1fZQoaAZoCWgPQwgpeXWOAckqwJSGlFKUaBVLMmgWR0AxuqnFYMfBdX2UKGgGaAloD0MInL8JhQiYHcCUhpRSlGgVSzJoFkdAMZzTz/ZM+XV9lChoBmgJaA9DCFnaqbncsC/AlIaUUpRoFUsyaBZHQDKFrk8zQ/p1fZQoaAZoCWgPQwjSAN4CCfokwJSGlFKUaBVLMmgWR0AyXGlhw2l3dX2UKGgGaAloD0MIjC0EOSjhLMCUhpRSlGgVSzJoFkdAMjynDR+jM3V9lChoBmgJaA9DCNgMcEG2dCjAlIaUUpRoFUsyaBZHQDIen62v0RR1fZQoaAZoCWgPQwhzSGqhZGogwJSGlFKUaBVLMmgWR0AzB238XN1RdX2UKGgGaAloD0MITBqjdVStK8CUhpRSlGgVSzJoFkdAMt5Sm65G0HV9lChoBmgJaA9DCLoSgeofZBjAlIaUUpRoFUsyaBZHQDK+kdmxt551fZQoaAZoCWgPQwjncK32sI8nwJSGlFKUaBVLMmgWR0AyoJ1JUYKqdX2UKGgGaAloD0MI+FPjpZtcJsCUhpRSlGgVSzJoFkdAM43ied07sHV9lChoBmgJaA9DCOmBj8GK+yPAlIaUUpRoFUsyaBZHQDNk1uR9w3p1fZQoaAZoCWgPQwgu/rYnSBwbwJSGlFKUaBVLMmgWR0AzRSCOFQEZdX2UKGgGaAloD0MI1ArT9xryIsCUhpRSlGgVSzJoFkdAMydDYywfQ3V9lChoBmgJaA9DCDhpGhTNayHAlIaUUpRoFUsyaBZHQDQOa9bor4F1fZQoaAZoCWgPQwjjUSrhCX0wwJSGlFKUaBVLMmgWR0Az5ULlV94NdX2UKGgGaAloD0MIOgK4Wby4GMCUhpRSlGgVSzJoFkdAM8WhM8HObHV9lChoBmgJaA9DCGJodXKGwh7AlIaUUpRoFUsyaBZHQDOntIClrM11fZQoaAZoCWgPQwjR6Xk3FnQlwJSGlFKUaBVLMmgWR0A0manaWX1KdX2UKGgGaAloD0MIpUv/klT2LMCUhpRSlGgVSzJoFkdANHBlxwQ18HV9lChoBmgJaA9DCJ+sGK4OQCrAlIaUUpRoFUsyaBZHQDRQ1P3ztkZ1fZQoaAZoCWgPQwghQIaOHdQcwJSGlFKUaBVLMmgWR0A0Mt7rs0HhdX2UKGgGaAloD0MIA8+9h0ueI8CUhpRSlGgVSzJoFkdANSlCkXUH6nV9lChoBmgJaA9DCBAjhEcbJx/AlIaUUpRoFUsyaBZHQDUAG0NSZSh1fZQoaAZoCWgPQwgeM1AZ/+4kwJSGlFKUaBVLMmgWR0A04K8tf5UMdX2UKGgGaAloD0MIrkUL0LaKGcCUhpRSlGgVSzJoFkdANMLADaGpM3V9lChoBmgJaA9DCBdmoZ3TBCXAlIaUUpRoFUsyaBZHQDWsidJ8OTd1fZQoaAZoCWgPQwj1TC8xllkVwJSGlFKUaBVLMmgWR0A1g0mdAgPmdX2UKGgGaAloD0MIYW2MnfCSIMCUhpRSlGgVSzJoFkdANWOqFRHf/HV9lChoBmgJaA9DCAOWXMXipxrAlIaUUpRoFUsyaBZHQDVGIMz/IbR1fZQoaAZoCWgPQwgAcy1agEYewJSGlFKUaBVLMmgWR0A2KNqgyuZDdX2UKGgGaAloD0MI7zzxnC1gIsCUhpRSlGgVSzJoFkdANf+Yx+KCQXV9lChoBmgJaA9DCA4viEhNOy3AlIaUUpRoFUsyaBZHQDXf1CgK4QV1fZQoaAZoCWgPQwici7/tCSIiwJSGlFKUaBVLMmgWR0A1wdfb9If9dX2UKGgGaAloD0MIJCpUNxcfL8CUhpRSlGgVSzJoFkdANrRRqGlANXV9lChoBmgJaA9DCKPlQA+1vRbAlIaUUpRoFUsyaBZHQDaLMB6rvLJ1fZQoaAZoCWgPQwglCFdAoaYxwJSGlFKUaBVLMmgWR0A2a3gUDdP+dX2UKGgGaAloD0MIwCMqVDdrMMCUhpRSlGgVSzJoFkdANk2NR3u/lHV9lChoBmgJaA9DCOoHdZFCSRrAlIaUUpRoFUsyaBZHQDdFJiAlOXV1fZQoaAZoCWgPQwgi4uZUMsgmwJSGlFKUaBVLMmgWR0A3G/LTx5LRdX2UKGgGaAloD0MIbmx2pPp+IcCUhpRSlGgVSzJoFkdANvxtDUmUn3V9lChoBmgJaA9DCLecS3FVsSTAlIaUUpRoFUsyaBZHQDbegf2bobJ1fZQoaAZoCWgPQwi3KLNBJskhwJSGlFKUaBVLMmgWR0A3xEP1+RYBdX2UKGgGaAloD0MI+MH51LHqLcCUhpRSlGgVSzJoFkdAN5snNPgvUXV9lChoBmgJaA9DCLjn+dNGbSXAlIaUUpRoFUsyaBZHQDd7W/ag2611fZQoaAZoCWgPQwit3uF2aHAjwJSGlFKUaBVLMmgWR0A3XWT5ftx/dX2UKGgGaAloD0MIilbuBWYlGcCUhpRSlGgVSzJoFkdAOEgLmZE2HnV9lChoBmgJaA9DCNFBl3DodSbAlIaUUpRoFUsyaBZHQDgfMeOn2qV1fZQoaAZoCWgPQwgykdJsHg8swJSGlFKUaBVLMmgWR0A3//Ot4iX6dX2UKGgGaAloD0MIVRaFXRRNEsCUhpRSlGgVSzJoFkdAN+Jl8PWhAXV9lChoBmgJaA9DCIUoX9BCgiDAlIaUUpRoFUsyaBZHQDjUVXV9Wp91fZQoaAZoCWgPQwhHO2743SQlwJSGlFKUaBVLMmgWR0A4qx+az/p/dX2UKGgGaAloD0MI5J6u7ljINcCUhpRSlGgVSzJoFkdAOIupXIU8FXV9lChoBmgJaA9DCHbFjPD26CvAlIaUUpRoFUsyaBZHQDhuW2PT5O91fZQoaAZoCWgPQwiyoDAo08AqwJSGlFKUaBVLMmgWR0A5p+zMRpUQdX2UKGgGaAloD0MIA5fHmpF5L8CUhpRSlGgVSzJoFkdAOX8wUQCjlHV9lChoBmgJaA9DCP3ZjxSRWSPAlIaUUpRoFUsyaBZHQDlfy3CsOoZ1fZQoaAZoCWgPQwirXRPSGvMpwJSGlFKUaBVLMmgWR0A5Qjopx3mndX2UKGgGaAloD0MIs82N6QmbEcCUhpRSlGgVSzJoFkdAOow/cFhXsHV9lChoBmgJaA9DCH80nDI3ZyHAlIaUUpRoFUsyaBZHQDpjRu0kWyl1fZQoaAZoCWgPQwgm/5O/e9cawJSGlFKUaBVLMmgWR0A6Q8tf5ULldX2UKGgGaAloD0MIVydnKO7YIcCUhpRSlGgVSzJoFkdAOiZoPCl7+nV9lChoBmgJaA9DCMgkI2dhzxnAlIaUUpRoFUsyaBZHQDtbcqOLiuN1fZQoaAZoCWgPQwi9bhEY6/c0wJSGlFKUaBVLMmgWR0A7MqBmPHT7dX2UKGgGaAloD0MIey5Tk+BFL8CUhpRSlGgVSzJoFkdAOxNfgJkXlHV9lChoBmgJaA9DCNcwQ+OJvDPAlIaUUpRoFUsyaBZHQDr10mtyPuJ1fZQoaAZoCWgPQwhDOjyE8fMVwJSGlFKUaBVLMmgWR0A8Qny/bj95dX2UKGgGaAloD0MIDD1i9NwyIMCUhpRSlGgVSzJoFkdAPBmoNutOmHV9lChoBmgJaA9DCPlKICV2VSnAlIaUUpRoFUsyaBZHQDv6ebutwJh1fZQoaAZoCWgPQwiifazgtzkkwJSGlFKUaBVLMmgWR0A73Q9zOopAdX2UKGgGaAloD0MIoWmJldFQJMCUhpRSlGgVSzJoFkdAPSkNjLB9C3V9lChoBmgJaA9DCFDhCFIp9i7AlIaUUpRoFUsyaBZHQD0ATwlSjxl1fZQoaAZoCWgPQwgIV0ChnpYhwJSGlFKUaBVLMmgWR0A84e1rqMWHdX2UKGgGaAloD0MIFva0w19rIMCUhpRSlGgVSzJoFkdAPMRnBciW3XV9lChoBmgJaA9DCOIeSx+68CTAlIaUUpRoFUsyaBZHQD4oGnn+yZ91fZQoaAZoCWgPQwjEsplDUqMiwJSGlFKUaBVLMmgWR0A9/0/nnuAqdX2UKGgGaAloD0MInP2BctsuI8CUhpRSlGgVSzJoFkdAPeA1JlJ6IHV9lChoBmgJaA9DCPSj4ZS5KRfAlIaUUpRoFUsyaBZHQD3C9CeEqUh1fZQoaAZoCWgPQwjM07milFghwJSGlFKUaBVLMmgWR0A/DtQ9A5aNdX2UKGgGaAloD0MIOSf20D4GG8CUhpRSlGgVSzJoFkdAPuWNedCmdnV9lChoBmgJaA9DCGtJRzmYTSfAlIaUUpRoFUsyaBZHQD7Fx3mmtQt1fZQoaAZoCWgPQwgRx7q4jdYmwJSGlFKUaBVLMmgWR0A+p9QGfPHDdX2UKGgGaAloD0MIuqP/5VpsJcCUhpRSlGgVSzJoFkdAP45k078vVXV9lChoBmgJaA9DCGDNAYI5EiTAlIaUUpRoFUsyaBZHQD9lPxhDw6R1fZQoaAZoCWgPQwgIq7GEtWkowJSGlFKUaBVLMmgWR0A/RX2dupCKdX2UKGgGaAloD0MI4Gky423NK8CUhpRSlGgVSzJoFkdAPyd/SYw7DHV9lChoBmgJaA9DCPOqzmqB7RTAlIaUUpRoFUsyaBZHQEAL14gRsdl1fZQoaAZoCWgPQwgVONkG7gAdwJSGlFKUaBVLMmgWR0A/7ny/bj95dX2UKGgGaAloD0MI0NIVbCM+KsCUhpRSlGgVSzJoFkdAP87eEZiuuHV9lChoBmgJaA9DCLZN8bio9hvAlIaUUpRoFUsyaBZHQD+w6NlyzX11ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 500,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1e7db2c1a4c82ce891c4ad5025df162c0b6d6d417365ef83887f9207ef74cf00
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a55c28bea83faf3166f9050e94894616ffd6c4410c919049bd99f05bc26048d
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:81e30db40d10f28739ce230f0a0e445bf74ad29a5e684a58025b08fd5dc551e4
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d9fefdb7ec1865ed1c009650bb3c1291e02668cba1703e4a60a89c8cbcaade6
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5ec1e4eef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5ec1e594c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686818510747918793, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2EczP7CMZb4Jc5s/2EczP7CMZb4Jc5s/2EczP7CMZb4Jc5s/2EczP7CMZb4Jc5s/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAww7jv40Smz9QYki+JEH7P5P6AsCY5m89O90PP7OCrr+hU7y/K7JSvTilfT9PJyE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADYRzM/sIxlvglzmz+WDMM9Euz9vHAxpj3YRzM/sIxlvglzmz+WDMM9Euz9vHAxpj3YRzM/sIxlvglzmz+WDMM9Euz9vHAxpj3YRzM/sIxlvglzmz+WDMM9Euz9vHAxpj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.700315 -0.2241695 1.2144481]\n [ 0.700315 -0.2241695 1.2144481]\n [ 0.700315 -0.2241695 1.2144481]\n [ 0.700315 -0.2241695 1.2144481]]", "desired_goal": "[[-1.773888 1.2115036 -0.19568753]\n [ 1.9629254 -2.0465438 0.05856952]\n [ 0.56196946 -1.3633636 -1.4713022 ]\n [-0.05143945 0.9908023 0.62950605]]", "observation": "[[ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]\n [ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]\n [ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]\n [ 0.700315 -0.2241695 1.2144481 0.09523885 -0.03099636 0.08114898]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPGt0vVMHmz0K/lA+k5gBPqk2xruEPAo+GBd4u6DzXz2TO6I9ubESvr3SO73mBnc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05967258 0.07569756 0.20409408]\n [ 0.12655859 -0.006049 0.13499647]\n [-0.00378556 0.0546757 0.07921519]\n [-0.14325608 -0.04585527 0.24123725]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKxiV1AnoJ8CUhpRSlIwBbJRLMowBdJRHP+2yM1jy4F11fZQoaAZoCWgPQwjopWJjXl8kwJSGlFKUaBVLMmgWRz/pCsOoYNy6dX2UKGgGaAloD0MIHcu76gEbJMCUhpRSlGgVSzJoFkc/5W1YyO7xu3V9lChoBmgJaA9DCLhbkgN2zSnAlIaUUpRoFUsyaBZHP+GqCpWFN+N1fZQoaAZoCWgPQwg4Ef3a+lkUwJSGlFKUaBVLMmgWRz/3kWuX/o7ndX2UKGgGaAloD0MIUBcplIUvG8CUhpRSlGgVSzJoFkc/9ThxYJVsDXV9lChoBmgJaA9DCKOutfepsjDAlIaUUpRoFUsyaBZHP/NqFAVwgkl1fZQoaAZoCWgPQwhPsP86Nx0swJSGlFKUaBVLMmgWRz/xgNXo1UEQdX2UKGgGaAloD0MIIOwUqwbpMMCUhpRSlGgVSzJoFkc//9JkGzKLbnV9lChoBmgJaA9DCKUQyCWOrCHAlIaUUpRoFUsyaBZHP/18pkPMB6t1fZQoaAZoCWgPQwgsZK4Mqs0lwJSGlFKUaBVLMmgWRz/7qVY6nzg/dX2UKGgGaAloD0MIHQOy17snJsCUhpRSlGgVSzJoFkc/+b30wrUb1nV9lChoBmgJaA9DCIBIv30dKDDAlIaUUpRoFUsyaBZHQAUYHX2/SIB1fZQoaAZoCWgPQwjVzjC1pT4TwJSGlFKUaBVLMmgWR0AD7jebd8ArdX2UKGgGaAloD0MIBW1y+KTLKMCUhpRSlGgVSzJoFkdAAwXnhbW3B3V9lChoBmgJaA9DCFGDaRg+AhzAlIaUUpRoFUsyaBZHQAIRgRbr1NB1fZQoaAZoCWgPQwhsXP+uz3QtwJSGlFKUaBVLMmgWR0AMPoq0+kgwdX2UKGgGaAloD0MILSRgdHmDHMCUhpRSlGgVSzJoFkdACxbah6By0nV9lChoBmgJaA9DCPMAFvn1Gy3AlIaUUpRoFUsyaBZHQAovpY9xIat1fZQoaAZoCWgPQwj4GRcOhBwiwJSGlFKUaBVLMmgWR0AJO1UlzEJjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5ec1e4eef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5ec1e594c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686818884715529101, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkiTiPjN8+jtZjzk/kiTiPjN8+jtZjzk/kiTiPjN8+jtZjzk/kiTiPjN8+jtZjzk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwYmYv6lq5L9usNy+fcUevO2Ai78AJ2K/G9T1PhUJZj7K9L8+iKGevoxtjb/SRL2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2SJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2SJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2SJOI+M3z6O1mPOT+aqIQ9bF5KPH7tAz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44168526 0.0076442 0.72484356]\n [0.44168526 0.0076442 0.72484356]\n [0.44168526 0.0076442 0.72484356]\n [0.44168526 0.0076442 0.72484356]]", "desired_goal": "[[-1.1917039 -1.784505 -0.43103355]\n [-0.00969064 -1.089872 -0.8834076 ]\n [ 0.48013386 0.22464402 0.37491447]\n [-0.30982614 -1.1049056 -1.4786627 ]]", "observation": "[[0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]\n [0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]\n [0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]\n [0.44168526 0.0076442 0.72484356 0.06477471 0.01235161 0.03220891]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4YiYvYa5ZD2e+DY+AkcRPpe9g731USE+SaNivceeWD1VLo4+t0nvPRvV9Dywomk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07447983 0.05584099 0.17868277]\n [ 0.14187244 -0.06432646 0.1575392 ]\n [-0.0553315 0.0528858 0.27769724]\n [ 0.11683982 0.02988677 0.05703992]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk8fT8gMPIMCUhpRSlIwBbJRLMowBdJRHQDD/r7fpD/l1fZQoaAZoCWgPQwjFVWXfFYEewJSGlFKUaBVLMmgWR0Aw1oRIz3yqdX2UKGgGaAloD0MIlKKVe4GpKcCUhpRSlGgVSzJoFkdAMLbA1vVEu3V9lChoBmgJaA9DCKw41VqYVSXAlIaUUpRoFUsyaBZHQDCYxnFo+Oh1fZQoaAZoCWgPQwh6ck2BzFYlwJSGlFKUaBVLMmgWR0AxghbGFSKndX2UKGgGaAloD0MIObnfoSg4KMCUhpRSlGgVSzJoFkdAMVj1oQFs6HV9lChoBmgJaA9DCFQ7w9SWaiXAlIaUUpRoFUsyaBZHQDE5Pacqe9V1fZQoaAZoCWgPQwjtuUxNgu8iwJSGlFKUaBVLMmgWR0AxG0SAYpDvdX2UKGgGaAloD0MIW3heKjbmI8CUhpRSlGgVSzJoFkdAMgOKXOW0JHV9lChoBmgJaA9DCKkwthDkMCLAlIaUUpRoFUsyaBZHQDHaTB68g6l1fZQoaAZoCWgPQwgpeXWOAckqwJSGlFKUaBVLMmgWR0AxuqnFYMfBdX2UKGgGaAloD0MInL8JhQiYHcCUhpRSlGgVSzJoFkdAMZzTz/ZM+XV9lChoBmgJaA9DCFnaqbncsC/AlIaUUpRoFUsyaBZHQDKFrk8zQ/p1fZQoaAZoCWgPQwjSAN4CCfokwJSGlFKUaBVLMmgWR0AyXGlhw2l3dX2UKGgGaAloD0MIjC0EOSjhLMCUhpRSlGgVSzJoFkdAMjynDR+jM3V9lChoBmgJaA9DCNgMcEG2dCjAlIaUUpRoFUsyaBZHQDIen62v0RR1fZQoaAZoCWgPQwhzSGqhZGogwJSGlFKUaBVLMmgWR0AzB238XN1RdX2UKGgGaAloD0MITBqjdVStK8CUhpRSlGgVSzJoFkdAMt5Sm65G0HV9lChoBmgJaA9DCLoSgeofZBjAlIaUUpRoFUsyaBZHQDK+kdmxt551fZQoaAZoCWgPQwjncK32sI8nwJSGlFKUaBVLMmgWR0AyoJ1JUYKqdX2UKGgGaAloD0MI+FPjpZtcJsCUhpRSlGgVSzJoFkdAM43ied07sHV9lChoBmgJaA9DCOmBj8GK+yPAlIaUUpRoFUsyaBZHQDNk1uR9w3p1fZQoaAZoCWgPQwgu/rYnSBwbwJSGlFKUaBVLMmgWR0AzRSCOFQEZdX2UKGgGaAloD0MI1ArT9xryIsCUhpRSlGgVSzJoFkdAMydDYywfQ3V9lChoBmgJaA9DCDhpGhTNayHAlIaUUpRoFUsyaBZHQDQOa9bor4F1fZQoaAZoCWgPQwjjUSrhCX0wwJSGlFKUaBVLMmgWR0Az5ULlV94NdX2UKGgGaAloD0MIOgK4Wby4GMCUhpRSlGgVSzJoFkdAM8WhM8HObHV9lChoBmgJaA9DCGJodXKGwh7AlIaUUpRoFUsyaBZHQDOntIClrM11fZQoaAZoCWgPQwjR6Xk3FnQlwJSGlFKUaBVLMmgWR0A0manaWX1KdX2UKGgGaAloD0MIpUv/klT2LMCUhpRSlGgVSzJoFkdANHBlxwQ18HV9lChoBmgJaA9DCJ+sGK4OQCrAlIaUUpRoFUsyaBZHQDRQ1P3ztkZ1fZQoaAZoCWgPQwghQIaOHdQcwJSGlFKUaBVLMmgWR0A0Mt7rs0HhdX2UKGgGaAloD0MIA8+9h0ueI8CUhpRSlGgVSzJoFkdANSlCkXUH6nV9lChoBmgJaA9DCBAjhEcbJx/AlIaUUpRoFUsyaBZHQDUAG0NSZSh1fZQoaAZoCWgPQwgeM1AZ/+4kwJSGlFKUaBVLMmgWR0A04K8tf5UMdX2UKGgGaAloD0MIrkUL0LaKGcCUhpRSlGgVSzJoFkdANMLADaGpM3V9lChoBmgJaA9DCBdmoZ3TBCXAlIaUUpRoFUsyaBZHQDWsidJ8OTd1fZQoaAZoCWgPQwj1TC8xllkVwJSGlFKUaBVLMmgWR0A1g0mdAgPmdX2UKGgGaAloD0MIYW2MnfCSIMCUhpRSlGgVSzJoFkdANWOqFRHf/HV9lChoBmgJaA9DCAOWXMXipxrAlIaUUpRoFUsyaBZHQDVGIMz/IbR1fZQoaAZoCWgPQwgAcy1agEYewJSGlFKUaBVLMmgWR0A2KNqgyuZDdX2UKGgGaAloD0MI7zzxnC1gIsCUhpRSlGgVSzJoFkdANf+Yx+KCQXV9lChoBmgJaA9DCA4viEhNOy3AlIaUUpRoFUsyaBZHQDXf1CgK4QV1fZQoaAZoCWgPQwici7/tCSIiwJSGlFKUaBVLMmgWR0A1wdfb9If9dX2UKGgGaAloD0MIJCpUNxcfL8CUhpRSlGgVSzJoFkdANrRRqGlANXV9lChoBmgJaA9DCKPlQA+1vRbAlIaUUpRoFUsyaBZHQDaLMB6rvLJ1fZQoaAZoCWgPQwglCFdAoaYxwJSGlFKUaBVLMmgWR0A2a3gUDdP+dX2UKGgGaAloD0MIwCMqVDdrMMCUhpRSlGgVSzJoFkdANk2NR3u/lHV9lChoBmgJaA9DCOoHdZFCSRrAlIaUUpRoFUsyaBZHQDdFJiAlOXV1fZQoaAZoCWgPQwgi4uZUMsgmwJSGlFKUaBVLMmgWR0A3G/LTx5LRdX2UKGgGaAloD0MIbmx2pPp+IcCUhpRSlGgVSzJoFkdANvxtDUmUn3V9lChoBmgJaA9DCLecS3FVsSTAlIaUUpRoFUsyaBZHQDbegf2bobJ1fZQoaAZoCWgPQwi3KLNBJskhwJSGlFKUaBVLMmgWR0A3xEP1+RYBdX2UKGgGaAloD0MI+MH51LHqLcCUhpRSlGgVSzJoFkdAN5snNPgvUXV9lChoBmgJaA9DCLjn+dNGbSXAlIaUUpRoFUsyaBZHQDd7W/ag2611fZQoaAZoCWgPQwit3uF2aHAjwJSGlFKUaBVLMmgWR0A3XWT5ftx/dX2UKGgGaAloD0MIilbuBWYlGcCUhpRSlGgVSzJoFkdAOEgLmZE2HnV9lChoBmgJaA9DCNFBl3DodSbAlIaUUpRoFUsyaBZHQDgfMeOn2qV1fZQoaAZoCWgPQwgykdJsHg8swJSGlFKUaBVLMmgWR0A3//Ot4iX6dX2UKGgGaAloD0MIVRaFXRRNEsCUhpRSlGgVSzJoFkdAN+Jl8PWhAXV9lChoBmgJaA9DCIUoX9BCgiDAlIaUUpRoFUsyaBZHQDjUVXV9Wp91fZQoaAZoCWgPQwhHO2743SQlwJSGlFKUaBVLMmgWR0A4qx+az/p/dX2UKGgGaAloD0MI5J6u7ljINcCUhpRSlGgVSzJoFkdAOIupXIU8FXV9lChoBmgJaA9DCHbFjPD26CvAlIaUUpRoFUsyaBZHQDhuW2PT5O91fZQoaAZoCWgPQwiyoDAo08AqwJSGlFKUaBVLMmgWR0A5p+zMRpUQdX2UKGgGaAloD0MIA5fHmpF5L8CUhpRSlGgVSzJoFkdAOX8wUQCjlHV9lChoBmgJaA9DCP3ZjxSRWSPAlIaUUpRoFUsyaBZHQDlfy3CsOoZ1fZQoaAZoCWgPQwirXRPSGvMpwJSGlFKUaBVLMmgWR0A5Qjopx3mndX2UKGgGaAloD0MIs82N6QmbEcCUhpRSlGgVSzJoFkdAOow/cFhXsHV9lChoBmgJaA9DCH80nDI3ZyHAlIaUUpRoFUsyaBZHQDpjRu0kWyl1fZQoaAZoCWgPQwgm/5O/e9cawJSGlFKUaBVLMmgWR0A6Q8tf5ULldX2UKGgGaAloD0MIVydnKO7YIcCUhpRSlGgVSzJoFkdAOiZoPCl7+nV9lChoBmgJaA9DCMgkI2dhzxnAlIaUUpRoFUsyaBZHQDtbcqOLiuN1fZQoaAZoCWgPQwi9bhEY6/c0wJSGlFKUaBVLMmgWR0A7MqBmPHT7dX2UKGgGaAloD0MIey5Tk+BFL8CUhpRSlGgVSzJoFkdAOxNfgJkXlHV9lChoBmgJaA9DCNcwQ+OJvDPAlIaUUpRoFUsyaBZHQDr10mtyPuJ1fZQoaAZoCWgPQwhDOjyE8fMVwJSGlFKUaBVLMmgWR0A8Qny/bj95dX2UKGgGaAloD0MIDD1i9NwyIMCUhpRSlGgVSzJoFkdAPBmoNutOmHV9lChoBmgJaA9DCPlKICV2VSnAlIaUUpRoFUsyaBZHQDv6ebutwJh1fZQoaAZoCWgPQwiifazgtzkkwJSGlFKUaBVLMmgWR0A73Q9zOopAdX2UKGgGaAloD0MIoWmJldFQJMCUhpRSlGgVSzJoFkdAPSkNjLB9C3V9lChoBmgJaA9DCFDhCFIp9i7AlIaUUpRoFUsyaBZHQD0ATwlSjxl1fZQoaAZoCWgPQwgIV0ChnpYhwJSGlFKUaBVLMmgWR0A84e1rqMWHdX2UKGgGaAloD0MIFva0w19rIMCUhpRSlGgVSzJoFkdAPMRnBciW3XV9lChoBmgJaA9DCOIeSx+68CTAlIaUUpRoFUsyaBZHQD4oGnn+yZ91fZQoaAZoCWgPQwjEsplDUqMiwJSGlFKUaBVLMmgWR0A9/0/nnuAqdX2UKGgGaAloD0MInP2BctsuI8CUhpRSlGgVSzJoFkdAPeA1JlJ6IHV9lChoBmgJaA9DCPSj4ZS5KRfAlIaUUpRoFUsyaBZHQD3C9CeEqUh1fZQoaAZoCWgPQwjM07milFghwJSGlFKUaBVLMmgWR0A/DtQ9A5aNdX2UKGgGaAloD0MIOSf20D4GG8CUhpRSlGgVSzJoFkdAPuWNedCmdnV9lChoBmgJaA9DCGtJRzmYTSfAlIaUUpRoFUsyaBZHQD7Fx3mmtQt1fZQoaAZoCWgPQwgRx7q4jdYmwJSGlFKUaBVLMmgWR0A+p9QGfPHDdX2UKGgGaAloD0MIuqP/5VpsJcCUhpRSlGgVSzJoFkdAP45k078vVXV9lChoBmgJaA9DCGDNAYI5EiTAlIaUUpRoFUsyaBZHQD9lPxhDw6R1fZQoaAZoCWgPQwgIq7GEtWkowJSGlFKUaBVLMmgWR0A/RX2dupCKdX2UKGgGaAloD0MI4Gky423NK8CUhpRSlGgVSzJoFkdAPyd/SYw7DHV9lChoBmgJaA9DCPOqzmqB7RTAlIaUUpRoFUsyaBZHQEAL14gRsdl1fZQoaAZoCWgPQwgVONkG7gAdwJSGlFKUaBVLMmgWR0A/7ny/bj95dX2UKGgGaAloD0MI0NIVbCM+KsCUhpRSlGgVSzJoFkdAP87eEZiuuHV9lChoBmgJaA9DCLZN8bio9hvAlIaUUpRoFUsyaBZHQD+w6NlyzX11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -8.072087429836392, "std_reward": 2.782124035124461, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-15T08:42:00.149769"}
 
1
+ {"mean_reward": -15.035596243292094, "std_reward": 4.916076396078646, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-15T08:48:40.149435"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:69051bb1a91ed33da076568b12360d76c0a0428606208f364fad37d9c4ba7efc
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c36cb491068338a376d49051783ba34476e113936e75a76f0202ce8b42a314
3
  size 2387