File size: 1,186 Bytes
f3abe3d
 
 
 
 
705a53a
f3abe3d
aa6b0c2
 
f3abe3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705a53a
f3abe3d
 
 
705a53a
a520ae2
aa6b0c2
 
 
 
 
f3abe3d
aa6b0c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from typing import Any, Dict, List
import base64
import io
import tempfile
from PIL import Image
import logging

def process_image(img):
    crash_img = img.crop((0,0, 200, 200))

    if crash_img:
        img_io = io.BytesIO()
        crash_img.save(img_io, "PNG")
        img_io.seek(0)
        # Return the cropped image as base64
        return {"data": base64.b64encode(img_io.read()).decode("utf-8"), "mime_type": "image/png"}
    else:
        return {"error": "No crash diagram detected"}


class EndpointHandler:
     def __init__(self, path: str = ""):
        """Initialize the endpoint handler.
        
        Args:
            path: Path to the model artifacts
        """
        logging.warning("initialized")
        pass
     
     def __call__(self, data: Any) -> List[List[Dict[str, str]]]:
         logging.warning("inside __call__")
         inputs = data.pop("inputs", data)
         imagedata = inputs.pop("imagedata", inputs)
         if isinstance(imagedata, str):
            logging.warning("decoding pdfdata")
            image_bytes = base64.b64decode(imagedata)
            img = Image.open(io.BytesIO(image_bytes))

            return process_image(img)