File size: 3,700 Bytes
afaaa2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
06/06/2023 08:33:12 AM  Seed: 555
06/06/2023 08:33:12 AM  unet attention_head_dim: 8
06/06/2023 08:33:12 AM Inferred yaml: v1-inference.yaml, attn: sd1, prediction_type: epsilon
06/06/2023 08:33:27 AM Enabled xformers
06/06/2023 08:33:28 AM Successfully compiled models
06/06/2023 08:33:28 AM * DLMA resolution 512, buckets: [[512, 512], [576, 448], [448, 576], [640, 384], [384, 640], [768, 320], [320, 768], [896, 256], [256, 896], [1024, 256], [256, 1024]]
06/06/2023 08:33:28 AM  Preloading images...
06/06/2023 08:38:21 AM  * Removed 1628 images from the training set to use for validation
06/06/2023 08:38:21 AM  * DLMA initialized with 1628 images.
06/06/2023 08:38:22 AM  ** Dataset 'val': 411 batches, num_images: 1644, batch_size: 4
06/06/2023 08:38:22 AM  * Aspect ratio bucket (256, 896) has only 1 images. At batch size 4 this makes for an effective multiplier of 4.0, which may cause problems. Consider adding 3 or more images for aspect ratio 2:7, or reducing your batch_size.
06/06/2023 08:38:22 AM  * DLMA initialized with 9223 images.
06/06/2023 08:38:22 AM  ** Dataset 'train': 2310 batches, num_images: 9240, batch_size: 4
06/06/2023 08:38:22 AM  * text encoder optimizer: AdamW (196 parameters) *
06/06/2023 08:38:22 AM     lr: 1.5e-07, betas: [0.9, 0.999], epsilon: 1e-08, weight_decay: 0.01 *
06/06/2023 08:38:22 AM  * unet optimizer: AdamW (686 parameters) *
06/06/2023 08:38:22 AM     lr: 5e-08, betas: [0.9, 0.999], epsilon: 1e-08, weight_decay: 0.01 *
06/06/2023 08:38:22 AM  Grad scaler enabled: True (amp mode)
06/06/2023 08:38:22 AM  Pretraining GPU Memory: 7007 / 24576 MB
06/06/2023 08:38:22 AM  saving ckpts every 1000000000.0 minutes
06/06/2023 08:38:22 AM  saving ckpts every 25 epochs
06/06/2023 08:38:22 AM  unet device: cuda:0, precision: torch.float32, training: True
06/06/2023 08:38:22 AM  text_encoder device: cuda:0, precision: torch.float32, training: True
06/06/2023 08:38:22 AM  vae device: cuda:0, precision: torch.float16, training: False
06/06/2023 08:38:22 AM  scheduler: <class 'diffusers.schedulers.scheduling_ddpm.DDPMScheduler'>
06/06/2023 08:38:22 AM  Project name: vodka_v4_2
06/06/2023 08:38:22 AM  grad_accum: 1
06/06/2023 08:38:22 AM  batch_size: 4
06/06/2023 08:38:22 AM  epoch_len: 2310
06/07/2023 02:35:05 AM  Saving model, 25 epochs at step 57750
06/07/2023 02:35:05 AM  * Saving diffusers model to logs/vodka_v4_2_20230606-083312/ckpts/vodka_v4_2-ep25-gs57750
06/07/2023 02:35:10 AM  * Saving SD model to ./vodka_v4_2-ep25-gs57750.ckpt
06/07/2023 06:18:16 PM  Saving model, 25 epochs at step 115500
06/07/2023 06:18:16 PM  * Saving diffusers model to logs/vodka_v4_2_20230606-083312/ckpts/vodka_v4_2-ep50-gs115500
06/07/2023 06:18:31 PM  * Saving SD model to ./vodka_v4_2-ep50-gs115500.ckpt
06/08/2023 11:19:53 AM  Saving model, 25 epochs at step 173250
06/08/2023 11:19:53 AM  * Saving diffusers model to logs/vodka_v4_2_20230606-083312/ckpts/vodka_v4_2-ep75-gs173250
06/08/2023 11:20:17 AM  * Saving SD model to ./vodka_v4_2-ep75-gs173250.ckpt
06/09/2023 03:45:11 AM  * Saving diffusers model to logs/vodka_v4_2_20230606-083312/ckpts/last-vodka_v4_2-ep99-gs231000
06/09/2023 03:45:15 AM  * Saving SD model to ./last-vodka_v4_2-ep99-gs231000.ckpt
06/09/2023 03:45:33 AM Training complete
06/09/2023 03:45:33 AM Total training time took 4027.18 minutes, total steps: 231000
06/09/2023 03:45:33 AM Average epoch time: 40.23 minutes
06/09/2023 03:45:33 AM  ***************************
06/09/2023 03:45:33 AM  **** Finished training ****
06/09/2023 03:45:33 AM  ***************************