Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# MP_FaceMesh_V2
|
10 |
+
|
11 |
+
## Model Description
|
12 |
+
MP_FaceMesh_V2 is a pytorch port of tensorfolow [FaceMeshV2](https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/index) model from Google's [mediapipe](https://github.com/google-ai-edge/mediapipe) library.
|
13 |
+
The model takes a cropped 2D face with 25% margin on each side resized to 256 x 256 pixels and outputs a dense 473 landmark coordinates in a 3D (x,y,z) coordinate space.
|
14 |
+
|
15 |
+
The original tensorflow model was ported to ONNX and then to pytorch using [onnx2torch](https://github.com/ENOT-AutoDL/onnx2torch). Currently, we are serializing the converted model, which requires onnx2torch as a dependency.
|
16 |
+
|
17 |
+
See the mediapipe [model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Blendshape%20V2.pdf) for more details.
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
- **Model Type**: Convolutional Neural Network (MobileNetV2-like)
|
21 |
+
- **Framework**: pytorch
|
22 |
+
|
23 |
+
## Model Sources
|
24 |
+
- **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat)
|
25 |
+
- **Model Card**: [Attention Mesh: High-fidelity Face Mesh Prediction in Real-time](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20MediaPipe%20Face%20Mesh%20V2.pdf)
|
26 |
+
- **Paper**: [Mediapipe FaceMesh model card](https://arxiv.org/abs/2006.10962)
|
27 |
+
## Citation
|
28 |
+
If you use the mp_facemesh_v2 model in your research or application, please cite the following paper:
|
29 |
+
|
30 |
+
Grishchenko, I., Ablavatski, A., Kartynnik, Y., Raveendran, K., & Grundmann, M. (2020). Attention mesh: High-fidelity face mesh prediction in real-time. arXiv preprint arXiv:2006.10962.
|
31 |
+
|
32 |
+
```
|
33 |
+
@misc{grishchenko2020attentionmeshhighfidelityface,
|
34 |
+
title={Attention Mesh: High-fidelity Face Mesh Prediction in Real-time},
|
35 |
+
author={Ivan Grishchenko and Artsiom Ablavatski and Yury Kartynnik and Karthik Raveendran and Matthias Grundmann},
|
36 |
+
year={2020},
|
37 |
+
eprint={2006.10962},
|
38 |
+
archivePrefix={arXiv},
|
39 |
+
primaryClass={cs.CV},
|
40 |
+
url={https://arxiv.org/abs/2006.10962},
|
41 |
+
}
|
42 |
+
```
|
43 |
+
|
44 |
+
## Example Useage
|
45 |
+
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
from huggingface_hub import hf_hub_download
|
49 |
+
|
50 |
+
device = 'cpu'
|
51 |
+
|
52 |
+
# Load model and weights
|
53 |
+
landmark_model_file = hf_hub_download(repo_id='py-feat/mp_facemesh_v2', filename="face_landmarks_detector_Nx3x256x256_onnx.pth")
|
54 |
+
landmark_detector = torch.load(landmark_model_file, map_location=device, weights_only=False)
|
55 |
+
landmark_detector.eval()
|
56 |
+
landmark_detector.to(device)
|
57 |
+
|
58 |
+
|
59 |
+
# Test model
|
60 |
+
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224]
|
61 |
+
|
62 |
+
# Extract Landmarks
|
63 |
+
landmark_results = landmark_detector(torch.tensor(face_image).to(device))
|
64 |
+
|
65 |
+
```
|