Image Feature Extraction
Py-Feat
English
ljchang commited on
Commit
4112525
1 Parent(s): d5a5a8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ ---
6
+
7
+
8
+
9
+ # MP_FaceMesh_V2
10
+
11
+ ## Model Description
12
+ MP_FaceMesh_V2 is a pytorch port of tensorfolow [FaceMeshV2](https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/index) model from Google's [mediapipe](https://github.com/google-ai-edge/mediapipe) library.
13
+ The model takes a cropped 2D face with 25% margin on each side resized to 256 x 256 pixels and outputs a dense 473 landmark coordinates in a 3D (x,y,z) coordinate space.
14
+
15
+ The original tensorflow model was ported to ONNX and then to pytorch using [onnx2torch](https://github.com/ENOT-AutoDL/onnx2torch). Currently, we are serializing the converted model, which requires onnx2torch as a dependency.
16
+
17
+ See the mediapipe [model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Blendshape%20V2.pdf) for more details.
18
+
19
+ ## Model Details
20
+ - **Model Type**: Convolutional Neural Network (MobileNetV2-like)
21
+ - **Framework**: pytorch
22
+
23
+ ## Model Sources
24
+ - **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat)
25
+ - **Model Card**: [Attention Mesh: High-fidelity Face Mesh Prediction in Real-time](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20MediaPipe%20Face%20Mesh%20V2.pdf)
26
+ - **Paper**: [Mediapipe FaceMesh model card](https://arxiv.org/abs/2006.10962)
27
+ ## Citation
28
+ If you use the mp_facemesh_v2 model in your research or application, please cite the following paper:
29
+
30
+ Grishchenko, I., Ablavatski, A., Kartynnik, Y., Raveendran, K., & Grundmann, M. (2020). Attention mesh: High-fidelity face mesh prediction in real-time. arXiv preprint arXiv:2006.10962.
31
+
32
+ ```
33
+ @misc{grishchenko2020attentionmeshhighfidelityface,
34
+ title={Attention Mesh: High-fidelity Face Mesh Prediction in Real-time},
35
+ author={Ivan Grishchenko and Artsiom Ablavatski and Yury Kartynnik and Karthik Raveendran and Matthias Grundmann},
36
+ year={2020},
37
+ eprint={2006.10962},
38
+ archivePrefix={arXiv},
39
+ primaryClass={cs.CV},
40
+ url={https://arxiv.org/abs/2006.10962},
41
+ }
42
+ ```
43
+
44
+ ## Example Useage
45
+
46
+ ```python
47
+ import torch
48
+ from huggingface_hub import hf_hub_download
49
+
50
+ device = 'cpu'
51
+
52
+ # Load model and weights
53
+ landmark_model_file = hf_hub_download(repo_id='py-feat/mp_facemesh_v2', filename="face_landmarks_detector_Nx3x256x256_onnx.pth")
54
+ landmark_detector = torch.load(landmark_model_file, map_location=device, weights_only=False)
55
+ landmark_detector.eval()
56
+ landmark_detector.to(device)
57
+
58
+
59
+ # Test model
60
+ face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224]
61
+
62
+ # Extract Landmarks
63
+ landmark_results = landmark_detector(torch.tensor(face_image).to(device))
64
+
65
+ ```