--- license: apache-2.0 language: - en --- # MP_FaceMesh_V2 ## Model Description MP_FaceMesh_V2 is a pytorch port of tensorfolow [FaceMeshV2](https://ai.google.dev/edge/mediapipe/solutions/vision/face_landmarker/index) model from Google's [mediapipe](https://github.com/google-ai-edge/mediapipe) library. The model takes a cropped 2D face with 25% margin on each side resized to 256 x 256 pixels and outputs a dense 473 landmark coordinates in a 3D (x,y,z) coordinate space. The original tensorflow model was ported to ONNX and then to pytorch using [onnx2torch](https://github.com/ENOT-AutoDL/onnx2torch). Currently, we are serializing the converted model, which requires onnx2torch as a dependency. See the mediapipe [model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Blendshape%20V2.pdf) for more details. ## Model Details - **Model Type**: Convolutional Neural Network (MobileNetV2-like) - **Framework**: pytorch ## Model Sources - **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat) - **Model Card**: [Attention Mesh: High-fidelity Face Mesh Prediction in Real-time](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20MediaPipe%20Face%20Mesh%20V2.pdf) - **Paper**: [Mediapipe FaceMesh model card](https://arxiv.org/abs/2006.10962) ## Citation If you use the mp_facemesh_v2 model in your research or application, please cite the following paper: Grishchenko, I., Ablavatski, A., Kartynnik, Y., Raveendran, K., & Grundmann, M. (2020). Attention mesh: High-fidelity face mesh prediction in real-time. arXiv preprint arXiv:2006.10962. ``` @misc{grishchenko2020attentionmeshhighfidelityface, title={Attention Mesh: High-fidelity Face Mesh Prediction in Real-time}, author={Ivan Grishchenko and Artsiom Ablavatski and Yury Kartynnik and Karthik Raveendran and Matthias Grundmann}, year={2020}, eprint={2006.10962}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2006.10962}, } ``` ## Example Useage ```python import torch from huggingface_hub import hf_hub_download device = 'cpu' # Load model and weights landmark_model_file = hf_hub_download(repo_id='py-feat/mp_facemesh_v2', filename="face_landmarks_detector_Nx3x256x256_onnx.pth") landmark_detector = torch.load(landmark_model_file, map_location=device, weights_only=False) landmark_detector.eval() landmark_detector.to(device) # Test model face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224] # Extract Landmarks landmark_results = landmark_detector(torch.tensor(face_image).to(device)) ```