Update README.md
Browse files
README.md
CHANGED
@@ -2,16 +2,18 @@
|
|
2 |
tags:
|
3 |
- model_hub_mixin
|
4 |
- pytorch_model_hub_mixin
|
|
|
|
|
5 |
---
|
6 |
|
7 |
# ResMaskNet
|
8 |
|
9 |
## Model Description
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
- **Model Type**: Convolutional Neural Network (CNN)
|
14 |
-
- **Architecture**:
|
15 |
- **Input Size**: 224x224 pixels
|
16 |
- **Framework**: PyTorch
|
17 |
|
@@ -20,7 +22,7 @@ ResMaskNet is a convolutional neural network designed for robust face recognitio
|
|
20 |
- **Paper**: [Facial Expression Recognition Using Residual Masking Network](https://ieeexplore.ieee.org/document/9411919)
|
21 |
|
22 |
## Citation
|
23 |
-
If you use the
|
24 |
|
25 |
Pham Luan, The Huynh Vu, and Tuan Anh Tran. "Facial Expression Recognition using Residual Masking Network". In: Proc. ICPR. 2020.
|
26 |
|
@@ -37,3 +39,31 @@ Pham Luan, The Huynh Vu, and Tuan Anh Tran. "Facial Expression Recognition using
|
|
37 |
|
38 |
## Acknowledgements
|
39 |
We thank Luan Pham for generously sharing this model with a permissive license.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- model_hub_mixin
|
4 |
- pytorch_model_hub_mixin
|
5 |
+
license: mit
|
6 |
+
library_name: pytorch
|
7 |
---
|
8 |
|
9 |
# ResMaskNet
|
10 |
|
11 |
## Model Description
|
12 |
+
resmasknet combines residual masking with unet architecture to predict 7 facial emotion categories from images.
|
13 |
|
14 |
## Model Details
|
15 |
- **Model Type**: Convolutional Neural Network (CNN)
|
16 |
+
- **Architecture**: Residual masking network with u-network. Output layer classifies 7 emotion categories
|
17 |
- **Input Size**: 224x224 pixels
|
18 |
- **Framework**: PyTorch
|
19 |
|
|
|
22 |
- **Paper**: [Facial Expression Recognition Using Residual Masking Network](https://ieeexplore.ieee.org/document/9411919)
|
23 |
|
24 |
## Citation
|
25 |
+
If you use the svm_au model in your research or application, please cite the following paper:
|
26 |
|
27 |
Pham Luan, The Huynh Vu, and Tuan Anh Tran. "Facial Expression Recognition using Residual Masking Network". In: Proc. ICPR. 2020.
|
28 |
|
|
|
39 |
|
40 |
## Acknowledgements
|
41 |
We thank Luan Pham for generously sharing this model with a permissive license.
|
42 |
+
|
43 |
+
## Example Useage
|
44 |
+
|
45 |
+
```python
|
46 |
+
import numpy as np
|
47 |
+
import torch
|
48 |
+
import torch.nn as nn
|
49 |
+
from feat.emo_detectors.ResMaskNet.resmasknet_test import ResMasking
|
50 |
+
from huggingface_hub import hf_hub_download
|
51 |
+
|
52 |
+
device = 'cpu'
|
53 |
+
emotion_detector = ResMasking("", in_channels=3)
|
54 |
+
emotion_detector.fc = nn.Sequential(nn.Dropout(0.4), nn.Linear(512, 7))
|
55 |
+
emotion_model_file = hf_hub_download(repo_id='py-feat/resmasknet', filename="ResMaskNet_Z_resmasking_dropout1_rot30.pth")
|
56 |
+
emotion_checkpoint = torch.load(emotion_model_file, map_location=device)["net"]
|
57 |
+
emotion_detector.load_state_dict(emotion_checkpoint)
|
58 |
+
emotion_detector.eval()
|
59 |
+
emotion_detector.to(device)
|
60 |
+
|
61 |
+
|
62 |
+
# Test model
|
63 |
+
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224]
|
64 |
+
|
65 |
+
# Classification - [angry, disgust, fear, happy, sad, surprise, neutral]
|
66 |
+
emotions = emotion_detector.forward(face_image)
|
67 |
+
emotion_probabilities = torch.softmax(emotions, 1)
|
68 |
+
|
69 |
+
```
|