--- tags: - model_hub_mixin - pytorch_model_hub_mixin license: mit library_name: pytorch --- # ResMaskNet ## Model Description resmasknet combines residual masking with unet architecture to predict 7 facial emotion categories from images. ## Model Details - **Model Type**: Convolutional Neural Network (CNN) - **Architecture**: Residual masking network with u-network. Output layer classifies 7 emotion categories - **Input Size**: 224x224 pixels - **Framework**: PyTorch ## Model Sources - **Repository**: [GitHub Repository](https://github.com/phamquiluan/ResidualMaskingNetwork) - **Paper**: [Facial Expression Recognition Using Residual Masking Network](https://ieeexplore.ieee.org/document/9411919) ## Citation If you use the svm_au model in your research or application, please cite the following paper: Pham Luan, The Huynh Vu, and Tuan Anh Tran. "Facial Expression Recognition using Residual Masking Network". In: Proc. ICPR. 2020. ``` @inproceedings{pham2021facial, title={Facial expression recognition using residual masking network}, author={Pham, Luan and Vu, The Huynh and Tran, Tuan Anh}, booktitle={2020 25th International Conference on Pattern Recognition (ICPR)}, pages={4513--4519}, year={2021}, organization={IEEE} } ``` ## Acknowledgements We thank Luan Pham for generously sharing this model with a permissive license. ## Example Useage ```python import numpy as np import torch import torch.nn as nn from feat.emo_detectors.ResMaskNet.resmasknet_test import ResMasking from huggingface_hub import hf_hub_download device = 'cpu' emotion_detector = ResMasking("", in_channels=3) emotion_detector.fc = nn.Sequential(nn.Dropout(0.4), nn.Linear(512, 7)) emotion_model_file = hf_hub_download(repo_id='py-feat/resmasknet', filename="ResMaskNet_Z_resmasking_dropout1_rot30.pth") emotion_checkpoint = torch.load(emotion_model_file, map_location=device)["net"] emotion_detector.load_state_dict(emotion_checkpoint) emotion_detector.eval() emotion_detector.to(device) # Test model face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224] # Classification - [angry, disgust, fear, happy, sad, surprise, neutral] emotions = emotion_detector.forward(face_image) emotion_probabilities = torch.softmax(emotions, 1) ```