File size: 6,474 Bytes
a256709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""RAdam Optimizer.
Implementation lifted from: https://github.com/LiyuanLucasLiu/RAdam
Paper: `On the Variance of the Adaptive Learning Rate and Beyond` - https://arxiv.org/abs/1908.03265
"""
import math
import torch
from torch.optim.optimizer import Optimizer, required


class RAdam(Optimizer):
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
        self.buffer = [[None, None, None] for ind in range(10)]
        super(RAdam, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(RAdam, self).__setstate__(state)

    def step(self, closure=None):

        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError("RAdam does not support sparse gradients")

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if len(state) == 0:
                    state["step"] = 0
                    state["exp_avg"] = torch.zeros_like(p_data_fp32)
                    state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
                else:
                    state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
                    state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32)

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                beta1, beta2 = group["betas"]

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state["step"] += 1
                buffered = self.buffer[int(state["step"] % 10)]
                if state["step"] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state["step"]
                    beta2_t = beta2 ** state["step"]
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma

                    # more conservative since it's an approximated value
                    if N_sma >= 5:
                        step_size = (
                            group["lr"]
                            * math.sqrt(
                                (1 - beta2_t)
                                * (N_sma - 4)
                                / (N_sma_max - 4)
                                * (N_sma - 2)
                                / N_sma
                                * N_sma_max
                                / (N_sma_max - 2)
                            )
                            / (1 - beta1 ** state["step"])
                        )
                    else:
                        step_size = group["lr"] / (1 - beta1 ** state["step"])
                    buffered[2] = step_size

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32)

                # more conservative since it's an approximated value
                if N_sma >= 5:
                    denom = exp_avg_sq.sqrt().add_(group["eps"])
                    p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
                else:
                    p_data_fp32.add_(-step_size, exp_avg)

                p.data.copy_(p_data_fp32)

        return loss


class PlainRAdam(Optimizer):
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)

        super(PlainRAdam, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(PlainRAdam, self).__setstate__(state)

    def step(self, closure=None):

        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError("RAdam does not support sparse gradients")

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if len(state) == 0:
                    state["step"] = 0
                    state["exp_avg"] = torch.zeros_like(p_data_fp32)
                    state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
                else:
                    state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
                    state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32)

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                beta1, beta2 = group["betas"]

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state["step"] += 1
                beta2_t = beta2 ** state["step"]
                N_sma_max = 2 / (1 - beta2) - 1
                N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t)

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32)

                # more conservative since it's an approximated value
                if N_sma >= 5:
                    step_size = (
                        group["lr"]
                        * math.sqrt(
                            (1 - beta2_t)
                            * (N_sma - 4)
                            / (N_sma_max - 4)
                            * (N_sma - 2)
                            / N_sma
                            * N_sma_max
                            / (N_sma_max - 2)
                        )
                        / (1 - beta1 ** state["step"])
                    )
                    denom = exp_avg_sq.sqrt().add_(group["eps"])
                    p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
                else:
                    step_size = group["lr"] / (1 - beta1 ** state["step"])
                    p_data_fp32.add_(-step_size, exp_avg)

                p.data.copy_(p_data_fp32)

        return loss