File size: 9,957 Bytes
a256709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import json
from torch.utils.data import DataLoader
import PIL
from torch.utils.data import Dataset
import numpy as np
import pandas as pd
from torchvision import transforms
from PIL import Image
import random
from dataset.randaugment import RandomAugment
class MeDSLIP_Dataset(Dataset):
def __init__(self, csv_path, np_path, mode="train", num_neg_samples=7):
self.num_neg_samples = num_neg_samples
self.ann = json.load(open(csv_path, "r"))
self.img_path_list = list(self.ann)
self.anaomy_list = [
"trachea",
"left_hilar",
"right_hilar",
"hilar_unspec",
"left_pleural",
"right_pleural",
"pleural_unspec",
"heart_size",
"heart_border",
"left_diaphragm",
"right_diaphragm",
"diaphragm_unspec",
"retrocardiac",
"lower_left_lobe",
"upper_left_lobe",
"lower_right_lobe",
"middle_right_lobe",
"upper_right_lobe",
"left_lower_lung",
"left_mid_lung",
"left_upper_lung",
"left_apical_lung",
"left_lung_unspec",
"right_lower_lung",
"right_mid_lung",
"right_upper_lung",
"right_apical_lung",
"right_lung_unspec",
"lung_apices",
"lung_bases",
"left_costophrenic",
"right_costophrenic",
"costophrenic_unspec",
"cardiophrenic_sulcus",
"mediastinal",
"spine",
"clavicle",
"rib",
"stomach",
"right_atrium",
"right_ventricle",
"aorta",
"svc",
"interstitium",
"parenchymal",
"cavoatrial_junction",
"cardiopulmonary",
"pulmonary",
"lung_volumes",
"unspecified",
"other",
]
self.obs_list = [
"normal",
"clear",
"sharp",
"sharply",
"unremarkable",
"intact",
"stable",
"free",
"effusion",
"opacity",
"pneumothorax",
"edema",
"atelectasis",
"tube",
"consolidation",
"process",
"abnormality",
"enlarge",
"tip",
"low",
"pneumonia",
"line",
"congestion",
"catheter",
"cardiomegaly",
"fracture",
"air",
"tortuous",
"lead",
"disease",
"calcification",
"prominence",
"device",
"engorgement",
"picc",
"clip",
"elevation",
"expand",
"nodule",
"wire",
"fluid",
"degenerative",
"pacemaker",
"thicken",
"marking",
"scar",
"hyperinflate",
"blunt",
"loss",
"widen",
"collapse",
"density",
"emphysema",
"aerate",
"mass",
"crowd",
"infiltrate",
"obscure",
"deformity",
"hernia",
"drainage",
"distention",
"shift",
"stent",
"pressure",
"lesion",
"finding",
"borderline",
"hardware",
"dilation",
"chf",
"redistribution",
"aspiration",
"tail_abnorm_obs",
"excluded_obs",
]
self.rad_graph_results = np.load(np_path)
normalize = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
if mode == "train":
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
224, scale=(0.2, 1.0), interpolation=Image.BICUBIC
),
transforms.RandomHorizontalFlip(),
RandomAugment(
2,
7,
isPIL=True,
augs=[
"Identity",
"AutoContrast",
"Equalize",
"Brightness",
"Sharpness",
"ShearX",
"ShearY",
"TranslateX",
"TranslateY",
"Rotate",
],
),
transforms.ToTensor(),
normalize,
]
)
if mode == "test":
self.transform = transforms.Compose(
[
transforms.Resize([224, 224]),
transforms.ToTensor(),
normalize,
]
)
def __getitem__(self, index):
img_path = self.img_path_list[index]
class_label = self.rad_graph_results[
self.ann[img_path]["labels_id"], :, :
]
labels_pathology = np.zeros(class_label.shape[-1]) - 1
labels_anatomy = np.zeros(class_label.shape[0]) - 1
labels_pathology, index_list_pathology = self.triplet_extraction_pathology(
class_label
)
labels_anatomy, index_list_anatomy = self.triplet_extraction_anatomy(
class_label
)
index_list_pathology = np.array(index_list_pathology)
index_list_anatomy = np.array(index_list_anatomy)
img = PIL.Image.open(img_path).convert("RGB")
image = self.transform(img)
return {
"image": image,
"label_pathology": labels_pathology,
"index_pathology": index_list_pathology,
"label_anatomy": labels_anatomy,
"index_anatomy": index_list_anatomy,
"matrix": class_label,
}
def triplet_extraction_pathology(self, class_label):
"""
This is for ProtoCL. Therefore, we need to extract anatomies to use in pathology stream.
"""
exist_labels = np.zeros(class_label.shape[-1]) - 1
anatomy_list = []
for i in range(class_label.shape[1]):
temp_list = []
### extract the exist label for each pathology and maintain -1 if not mentioned. ###
if 0 in class_label[:, i]:
exist_labels[i] = 0
if 1 in class_label[:, i]:
exist_labels[i] = 1
### if the pathology exists try to get its anatomy.###
### Note that, the contrastive loss will only be caculated on exist pathology as it is meaningless to predict their anatomy for the non-exist entities###
temp_list.append(-1)
try:
temp_list = temp_list + random.sample(
np.where(class_label[:, i] != 1)[0].tolist(),
self.num_neg_samples,
)
except:
print("fatal error")
if temp_list == []:
temp_list = temp_list + random.sample(
np.where(class_label[:, i] != 1)[0].tolist(),
self.num_neg_samples + 1,
)
anatomy_list.append(temp_list)
return exist_labels, anatomy_list
def triplet_extraction_anatomy(self, class_label):
"""
This is for ProtoCL. Therefore, we need to extract pathological labels to use in anatomy stream.
"""
exist_labels = np.zeros(class_label.shape[0]) - 1
pathology_list = []
for i in range(class_label.shape[0]):
temp_list = []
### extract the exist label for each pathology and maintain -1 if not mentioned. ###
if 0 in class_label[i, :]:
exist_labels[i] = 0
if 1 in class_label[i, :]:
exist_labels[i] = 1
### if the pathology exists try to get its anatomy.###
### Note that, the contrastive loss will only be caculated on exist pathology as it is meaningless to predict their anatomy for the non-exist entities###
temp_list.append(-1)
try:
temp_list = temp_list + random.sample(
np.where(class_label[i, :] != 1)[0].tolist(),
self.num_neg_samples,
)
except:
print("fatal error")
if temp_list == []:
temp_list = temp_list + random.sample(
np.where(class_label[i, :] != 1)[0].tolist(),
self.num_neg_samples + 1,
)
pathology_list.append(temp_list)
return exist_labels, pathology_list
def __len__(self):
return len(self.ann)
def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns):
loaders = []
for dataset, sampler, bs, n_worker, is_train, collate_fn in zip(
datasets, samplers, batch_size, num_workers, is_trains, collate_fns
):
if is_train:
shuffle = sampler is None
drop_last = True
else:
shuffle = False
drop_last = False
loader = DataLoader(
dataset,
batch_size=bs,
num_workers=n_worker,
pin_memory=True,
sampler=sampler,
shuffle=shuffle,
collate_fn=collate_fn,
drop_last=drop_last,
)
loaders.append(loader)
return loaders
|