File size: 19,395 Bytes
a256709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# modified from https://github.com/tensorflow/models/blob/master/research/slim/nets/s3dg.py
from sklearn.metrics import log_loss
import torch.nn as nn
import torch
import math
import numpy as np
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
from .transformer import *
import torchvision.models as models
from einops import rearrange
from transformers import AutoModel

"""
args.N
args.d_model
args.res_base_model
args.H
args.num_queries
args.dropout
args.attribute_set_size
"""


class MeDSLIP(nn.Module):
    def __init__(
        self, config, anatomy_book, pathology_book, mode="train",
    ):
        super(MeDSLIP, self).__init__()
        self.mode = mode
        self.d_model = config["d_model"]
        # """ book embedding"""
        with torch.no_grad():
            bert_model = self._get_bert_basemodel(
                config["text_encoder"], freeze_layers=None
            ).to(anatomy_book["input_ids"].device)
            self.anatomy_book = bert_model(
                input_ids=anatomy_book["input_ids"],
                attention_mask=anatomy_book["attention_mask"],
            )  # (**encoded_inputs)
            self.anatomy_book = self.anatomy_book.last_hidden_state[:, 0, :]
            self.pathology_book = bert_model(
                input_ids=pathology_book["input_ids"],
                attention_mask=pathology_book["attention_mask"],
            )  # (**encoded_inputs)
            self.pathology_book = self.pathology_book.last_hidden_state[:, 0, :]
        self.pathology_embedding_layer = nn.Linear(768, 256)
        self.cl_fc_pathology = nn.Linear(256, 768)

        self.pathology_name = [
            "normal",
            "clear",
            "sharp",
            "sharply",
            "unremarkable",
            "intact",
            "stable",
            "free",
            "effusion",
            "opacity",
            "pneumothorax",
            "edema",
            "atelectasis",
            "tube",
            "consolidation",
            "process",
            "abnormality",
            "enlarge",
            "tip",
            "low",
            "pneumonia",
            "line",
            "congestion",
            "catheter",
            "cardiomegaly",
            "fracture",
            "air",
            "tortuous",
            "lead",
            "pathology",
            "calcification",
            "prominence",
            "device",
            "engorgement",
            "picc",
            "clip",
            "elevation",
            "expand",
            "nodule",
            "wire",
            "fluid",
            "degenerative",
            "pacemaker",
            "thicken",
            "marking",
            "scar",
            "hyperinflate",
            "blunt",
            "loss",
            "widen",
            "coll_eapse",
            "density",
            "emphysema",
            "aerate",
            "mass",
            "crowd",
            "infiltrate",
            "obscure",
            "deformity",
            "hernia",
            "drainage",
            "distention",
            "shift",
            "stent",
            "pressure",
            "lesion",
            "finding",
            "borderline",
            "hardware",
            "dilation",
            "chf",
            "redistribution",
            "aspiration",
            "tail_abnorm_obs",
            "excluded_obs",
        ]

        self.excluded_pathology = [
            "pneumonia",
            "infiltrate",
            "mass",
            "nodule",
            "emphysema",
            "fibrosis",
            "thicken",
            "hernia",
        ]

        self.keep_class_dim_pathology = [
            self.pathology_name.index(i)
            for i in self.pathology_name
            if i not in self.excluded_pathology
        ]
        """ visual backbone"""
        self.resnet_dict = {
            "resnet18": models.resnet18(pretrained=False),
            "resnet50": models.resnet50(pretrained=False),
        }
        resnet = self._get_res_basemodel(config["res_base_model"])
        num_ftrs = int(resnet.fc.in_features / 2)
        self.res_features = nn.Sequential(*list(resnet.children())[:-3])

        self.res_l1_pathology = nn.Linear(num_ftrs, num_ftrs)
        self.res_l2_pathology = nn.Linear(num_ftrs, self.d_model)

        self.cl_fc_anatomy = nn.Linear(256, 768)
        self.res_l1_anatomy = nn.Linear(num_ftrs, num_ftrs)
        self.res_l2_anatomy = nn.Linear(num_ftrs, self.d_model)

        self.mask_generator = nn.Linear(num_ftrs, num_ftrs)

        ###################################
        """ Query Decoder"""
        ###################################

        self.H = config["H"]
        decoder_layer = TransformerDecoderLayer(
            self.d_model, config["H"], 1024, 0.1, "relu", normalize_before=True
        )
        decoder_norm = nn.LayerNorm(self.d_model)
        self.decoder_anatomy = TransformerDecoder(
            decoder_layer, config["N"], decoder_norm, return_intermediate=False
        )
        self.decoder_pathology = TransformerDecoder(
            decoder_layer, config["N"], decoder_norm, return_intermediate=False
        )

        # Learnable Queries
        self.dropout_feas_anatomy = nn.Dropout(config["dropout"])
        self.dropout_feas_pathology = nn.Dropout(config["dropout"])

        # Attribute classifier
        self.classifier_anatomy = nn.Linear(self.d_model, config["attribute_set_size"])
        self.classifier_pathology = nn.Linear(
            self.d_model, config["attribute_set_size"]
        )

        self.apply(self._init_weights)

    def _get_res_basemodel(self, res_model_name):
        try:
            res_model = self.resnet_dict[res_model_name]
            print("Image feature extractor:", res_model_name)
            return res_model
        except:
            raise (
                "Invalid model name. Check the config file and pass one of: resnet18 or resnet50"
            )

    def _get_bert_basemodel(self, bert_model_name, freeze_layers):
        try:
            model = AutoModel.from_pretrained(bert_model_name)
            print("text feature extractor:", bert_model_name)
        except:
            raise (
                "Invalid model name. Check the config file and pass a BERT model from transformers lybrary"
            )

        if freeze_layers is not None:
            for layer_idx in freeze_layers:
                for param in list(model.encoder.layer[layer_idx].parameters()):
                    param.requires_grad = False
        return model

    def image_encoder(self, xis):
        # patch features
        """
        16 torch.Size([16, 1024, 14, 14])
        torch.Size([16, 196, 1024])
        torch.Size([3136, 1024])
        torch.Size([16, 196, 256])
        """
        batch_size = xis.shape[0]
        res_fea = self.res_features(xis)  # batch_size,feature_size,patch_num,patch_num
        res_fea = rearrange(res_fea, "b d n1 n2 -> b (n1 n2) d")
        x = rearrange(res_fea, "b n d -> (b n) d")

        mask = self.mask_generator(x)
        x_pathology = mask * x
        x_anatomy = (1 - mask) * x

        x_pathology = self.res_l1_pathology(x_pathology)
        x_anatomy = self.res_l1_anatomy(x_anatomy)
        x_pathology = F.relu(x_pathology)
        x_anatomy = F.relu(x_anatomy)

        x_pathology = self.res_l2_pathology(x_pathology)
        x_anatomy = self.res_l2_anatomy(x_anatomy)

        out_emb_pathology = rearrange(x_pathology, "(b n) d -> b n d", b=batch_size)
        out_emb_anatomy = rearrange(x_anatomy, "(b n) d -> b n d", b=batch_size)
        return out_emb_pathology, out_emb_anatomy

    def forward(
        self,
        images,
        labels_pathology=None,
        labels_anatomy=None,
        matrix=None,
        sample_index_pathology=None,
        sample_index_anatomy=None,
        is_train=True,
        text_gen=False,
        no_cl=False,
        exclude_class=False,
    ):

        B = images.shape[0]
        device = images.device
        """ Visual Backbone """
        x_pathology, x_anatomy = self.image_encoder(images)  # batch_size,patch_num,dim

        features_pathology = x_pathology.transpose(0, 1)  # patch_num b dim
        features_anatomy = x_anatomy.transpose(0, 1)  # patch_num b dim

        query_embed_pathology = self.pathology_embedding_layer(self.pathology_book)
        query_embed_anatomy = self.pathology_embedding_layer(self.anatomy_book)
        query_embed_pathology = query_embed_pathology.unsqueeze(1).repeat(1, B, 1)
        query_embed_anatomy = query_embed_anatomy.unsqueeze(1).repeat(1, B, 1)

        features_pathology, ws_pathology = self.decoder_pathology(
            query_embed_pathology,
            features_pathology,
            memory_key_padding_mask=None,
            pos=None,
            query_pos=None,
        )
        features_anatomy, ws_anatomy = self.decoder_anatomy(
            query_embed_anatomy,
            features_anatomy,
            memory_key_padding_mask=None,
            pos=None,
            query_pos=None,
        )

        ap_pathology = features_pathology
        ap_anatomy = features_anatomy

        ap_logits = torch.bmm(
            ap_pathology.transpose(0, 1), ap_anatomy.transpose(0, 1).transpose(1, 2)
        ).transpose(
            1, 2
        ) 
        if text_gen:
            output_logits = ap_logits
        matrix_zero = matrix

        masks = matrix_zero >= 0
        ap_logits = ap_logits[masks]
        matrix_zero = matrix_zero[masks]

        loss_ap = F.binary_cross_entropy_with_logits(
            ap_logits.float(), matrix_zero.float()
        )

        out_pathology = self.dropout_feas_pathology(features_pathology)
        out_anatomy = self.dropout_feas_anatomy(features_anatomy)

        if is_train == True and no_cl == False:

            # get anatomytomy query
            anatomytomy_query = torch.zeros(
                [
                    sample_index_pathology.shape[0],
                    sample_index_pathology.shape[1],
                    sample_index_pathology.shape[2],
                    self.anatomy_book.shape[-1],
                ]
            ).to(
                device
            )
            entity_query = torch.zeros(
                [
                    sample_index_anatomy.shape[0],
                    sample_index_anatomy.shape[1],
                    sample_index_anatomy.shape[2],
                    self.pathology_book.shape[-1],
                ]
            ).to(device)

            anatomytomy_query = self.anatomy_book[sample_index_pathology, :] * (
                sample_index_pathology != -1
            ).int().unsqueeze(-1).repeat(
                1, 1, 1, 768
            )  # batch, Q , position_num ,dim
            entity_query = self.pathology_book[sample_index_anatomy, :] * (
                sample_index_anatomy != -1
            ).int().unsqueeze(-1).repeat(1, 1, 1, 768)

            matrix_zero_pathology = matrix
            matrix_zero_anatomy = matrix.transpose(1, 2)
            matrix_zero_pathology[matrix_zero_pathology < 1] = 0
            matrix_zero_anatomy[matrix_zero_anatomy < 1] = 0
            matrix_zero_pathology = matrix_zero_pathology.unsqueeze(3).repeat(
                1, 1, 1, anatomytomy_query.shape[-1]
            )
            matrix_zero_anatomy = matrix_zero_anatomy.unsqueeze(3).repeat(
                1, 1, 1, entity_query.shape[-1]
            )

            anatomy_temp = self.anatomy_book
            pathology_temp = self.pathology_book
            anatomy_temp = anatomy_temp.unsqueeze(0).repeat(
                anatomytomy_query.shape[0], 1, 1
            )
            pathology_temp = pathology_temp.unsqueeze(0).repeat(
                entity_query.shape[0], 1, 1
            )
            anatomy_temp = anatomy_temp.unsqueeze(2).repeat(
                1, 1, anatomytomy_query.shape[1], 1
            )
            pathology_temp = pathology_temp.unsqueeze(2).repeat(
                1, 1, entity_query.shape[1], 1
            )

            posi_matrix_pathology = (matrix_zero_pathology * anatomy_temp).transpose(
                1, 2
            )
            posi_matrix_anatomy = (matrix_zero_anatomy * pathology_temp).transpose(1, 2)

            for i in range(anatomytomy_query.shape[0]):
                for j in range(anatomytomy_query.shape[1]):
                    if (posi_matrix_pathology[i, j] != 0).sum() > 0:
                        num_posi = (
                            torch.nonzero(posi_matrix_pathology[i, j], as_tuple=True)[0]
                            .unique()
                            .shape[0]
                        )
                        assert anatomytomy_query[i, j, 0, :].sum() == 0
                        anatomytomy_query[i, j, 0, :] = (
                            posi_matrix_pathology[i, j, :, :].sum(dim=0) / num_posi
                        )

            for i in range(entity_query.shape[0]):
                for j in range(entity_query.shape[1]):
                    if (posi_matrix_anatomy[i, j] != 0).sum() > 0:
                        num_posi = (
                            torch.nonzero(posi_matrix_anatomy[i, j], as_tuple=True)[0]
                            .unique()
                            .shape[0]
                        )
                        assert entity_query[i, j, 0, :].sum() == 0
                        entity_query[i, j, 0, :] = (
                            posi_matrix_anatomy[i, j, :, :].sum(dim=0) / num_posi
                        )
            # Got anatomytomy query

            # [Q,B,A]
            ll_pathology = out_pathology.transpose(0, 1)  # B Q A
            ll_anatomy = out_anatomy.transpose(0, 1)  # B Q A

            Q_pathology = ll_pathology.shape[1]
            Q_anatomy = ll_anatomy.shape[1]

            ll_pathology = ll_pathology.reshape(
                ll_pathology.shape[0] * ll_pathology.shape[1], -1
            )
            ll_anatomy = ll_anatomy.reshape(
                ll_anatomy.shape[0] * ll_anatomy.shape[1], -1
            )

            ll_pathology = self.cl_fc_pathology(ll_pathology)
            ll_anatomy = self.cl_fc_anatomy(ll_anatomy)

            ll_pathology = ll_pathology.unsqueeze(dim=-1)
            ll_anatomy = ll_anatomy.unsqueeze(dim=-1)

            anatomytomy_query = anatomytomy_query.reshape(B * Q_pathology, 8, 768)
            entity_query = entity_query.reshape(B * Q_anatomy, 8, 768)

            ll_pathology = torch.bmm(
                anatomytomy_query, ll_pathology
            ).squeeze()  # B Q position_num
            ll_anatomy = torch.bmm(
                entity_query, ll_anatomy
            ).squeeze()  # B Q position_num

            cl_labels_pathology = torch.zeros((ll_pathology.shape[0])).to(device)
            cl_labels_anatomy = torch.zeros((ll_anatomy.shape[0])).to(device)

            if exclude_class == True:
                cl_labels_pathology = cl_labels_pathology.reshape(B, Q_pathology)
                cl_labels_anatomy = cl_labels_anatomy.reshape(B, Q_anatomy)

                cl_labels_pathology = cl_labels_pathology[
                    :, self.keep_class_dim_pathology
                ]
                cl_labels_anatomy = cl_labels_anatomy[:, self.keep_class_dim_pathology]

                cl_labels_pathology = cl_labels_pathology.reshape(-1)
                cl_labels_anatomy = cl_labels_anatomy.reshape(-1)

                ll_pathology = ll_pathology.reshape(B, Q_pathology, -1)
                ll_anatomy = ll_anatomy.reshape(B, Q_anatomy, -1)

                ll_pathology = ll_pathology[:, self.keep_class_dim_pathology, :]
                ll_pathology = ll_pathology.reshape(
                    B * (len(self.keep_class_dim_pathology)), -1
                )
                ll_anatomy = ll_anatomy.reshape(B * Q_anatomy, -1)

        x_pathology = self.classifier_pathology(out_pathology).transpose(0, 1)
        x_anatomy = self.classifier_anatomy(out_anatomy).transpose(
            0, 1
        )  # B query Atributes

        if exclude_class == True:
            labels_pathology = labels_pathology[:, self.keep_class_dim_pathology]
            x_pathology = x_pathology[:, self.keep_class_dim_pathology, :]

        labels_pathology = labels_pathology.reshape(-1, 1)
        labels_anatomy = labels_anatomy.reshape(-1, 1)
        logits_pathology = x_pathology.reshape(-1, x_pathology.shape[-1])
        logits_anatomy = x_anatomy.reshape(-1, x_anatomy.shape[-1])
        Mask_pathology = ((labels_pathology != -1) & (labels_pathology != 2)).squeeze()
        Mask_anatomy = ((labels_anatomy != -1) & (labels_anatomy != 2)).squeeze()

        cl_mask_pathology = (labels_pathology == 1).squeeze()
        cl_mask_anatomy = (labels_anatomy == 1).squeeze()
        if is_train == True:
            labels_pathology = labels_pathology[Mask_pathology].long()
            labels_anatomy = labels_anatomy[Mask_anatomy].long()
            logits_pathology = logits_pathology[Mask_pathology]
            logits_anatomy = logits_anatomy[Mask_anatomy]
            loss_ce_pathology = F.cross_entropy(
                logits_pathology, labels_pathology[:, 0]
            )
            loss_ce_anatomy = F.cross_entropy(logits_anatomy, labels_anatomy[:, 0])
            if no_cl == False:
                cl_labels_pathology = cl_labels_pathology[cl_mask_pathology].long()
                cl_labels_anatomy = cl_labels_anatomy[cl_mask_anatomy].long()
                ll_pathology = ll_pathology[cl_mask_pathology]
                ll_anatomy = ll_anatomy[cl_mask_anatomy]
                loss_cl_pathology = F.cross_entropy(ll_pathology, cl_labels_pathology)
                loss_cl_anatomy = F.cross_entropy(ll_anatomy, cl_labels_anatomy)
                loss_ce = loss_ce_pathology + loss_ce_anatomy
                loss_cl = loss_cl_pathology + loss_cl_anatomy
                loss = loss_ce + loss_cl + loss_ap
            else:
                loss_cl = torch.tensor(0)
                loss = loss_ce_pathology + loss_ce_anatomy + loss_ap
        else:
            loss = 0
        if is_train == True:
            if text_gen:
                return (
                    loss,
                    x_pathology,
                    ws_pathology,
                    x_anatomy,
                    ws_anatomy,
                    output_logits,
                )
            else:
                return (
                    loss,
                    loss_ce_pathology,
                    loss_cl_pathology,
                    loss_ce_anatomy,
                    loss_cl_anatomy,
                    loss_ap,
                )
        else:
            return loss, x_pathology, ws_pathology, x_anatomy, ws_anatomy

    @staticmethod
    def _init_weights(module):
        r"""Initialize weights like BERT - N(0.0, 0.02), bias = 0."""

        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)

        elif isinstance(module, nn.MultiheadAttention):
            module.in_proj_weight.data.normal_(mean=0.0, std=0.02)
            module.out_proj.weight.data.normal_(mean=0.0, std=0.02)

        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()