File size: 7,475 Bytes
a256709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# modified from https://github.com/tensorflow/models/blob/master/research/slim/nets/s3dg.py
from sklearn.metrics import log_loss
import torch.nn as nn
import torch
import math
import numpy as np
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
from .transformer import *
import torchvision.models as models
from einops import rearrange
from transformers import AutoModel

"""
args.N
args.d_model
args.res_base_model
args.H
args.num_queries
args.dropout
args.attribute_set_size
"""


class MeDSLIP(nn.Module):
    def __init__(self, config, ana_book, disease_book, mode="train"):
        super(MeDSLIP, self).__init__()

        self.mode = mode
        self.d_model = config["d_model"]
        with torch.no_grad():
            bert_model = self._get_bert_basemodel(
                config["text_encoder"], freeze_layers=None
            ).to(ana_book["input_ids"].device)
            self.ana_book = bert_model(
                input_ids=ana_book["input_ids"],
                attention_mask=ana_book["attention_mask"],
            )
            self.ana_book = self.ana_book.last_hidden_state[:, 0, :]
            self.disease_book = bert_model(
                input_ids=disease_book["input_ids"],
                attention_mask=disease_book["attention_mask"],
            )
            self.disease_book = self.disease_book.last_hidden_state[:, 0, :]
        self.disease_embedding_layer = nn.Linear(768, 256)
        self.cl_fc_pathology = nn.Linear(256, 768)
        self.cl_fc_anatomy = nn.Linear(256, 768)

        """ visual backbone"""
        self.resnet_dict = {
            "resnet18": models.resnet18(pretrained=False),
            "resnet50": models.resnet50(pretrained=False),
        }
        resnet = self._get_res_basemodel(config["res_base_model"])
        num_ftrs = int(resnet.fc.in_features / 2)
        self.res_features = nn.Sequential(*list(resnet.children())[:-3])
        self.res_l1_anatomy = nn.Linear(num_ftrs, num_ftrs)
        self.res_l2_anatomy = nn.Linear(num_ftrs, self.d_model)
        self.res_l1_pathology = nn.Linear(num_ftrs, num_ftrs)
        self.res_l2_pathology = nn.Linear(num_ftrs, self.d_model)

        self.mask_generator = nn.Linear(num_ftrs, num_ftrs)

        ###################################
        """ Query Decoder"""
        ###################################

        self.H = config["H"]
        decoder_layer = TransformerDecoderLayer(
            self.d_model, config["H"], 1024, 0.1, "relu", normalize_before=True
        )
        decoder_norm = nn.LayerNorm(self.d_model)
        self.decoder_anatomy = TransformerDecoder(
            decoder_layer, config["N"], decoder_norm, return_intermediate=False
        )
        self.decoder_pathology = TransformerDecoder(
            decoder_layer, config["N"], decoder_norm, return_intermediate=False
        )

        # Learnable Queries
        self.dropout_feas_anatomy = nn.Dropout(config["dropout"])
        self.dropout_feas_pathology = nn.Dropout(config["dropout"])

        # Attribute classifier
        self.classifier_anatomy = nn.Linear(self.d_model, config["attribute_set_size"])
        self.classifier_pathology = nn.Linear(self.d_model, config["attribute_set_size"])

        self.apply(self._init_weights)

    def _get_res_basemodel(self, res_model_name):
        try:
            res_model = self.resnet_dict[res_model_name]
            print("Image feature extractor:", res_model_name)
            return res_model
        except:
            raise (
                "Invalid model name. Check the config file and pass one of: resnet18 or resnet50"
            )

    def _get_bert_basemodel(self, bert_model_name, freeze_layers):
        try:
            model = AutoModel.from_pretrained(bert_model_name)
        except:
            raise (
                "Invalid model name. Check the config file and pass a BERT model from transformers lybrary"
            )

        if freeze_layers is not None:
            for layer_idx in freeze_layers:
                for param in list(model.encoder.layer[layer_idx].parameters()):
                    param.requires_grad = False
        return model

    def image_encoder(self, xis):
        # patch features
        """
        16 torch.Size([16, 1024, 14, 14])
        torch.Size([16, 196, 1024])
        torch.Size([3136, 1024])
        torch.Size([16, 196, 256])
        """
        batch_size = xis.shape[0]
        res_fea = self.res_features(xis)  # batch_size,feature_size,patch_num,patch_num
        res_fea = rearrange(res_fea, "b d n1 n2 -> b (n1 n2) d")
        x = rearrange(res_fea, "b n d -> (b n) d")
        x = self.mask_generator(x)
        x_pathology = x
        x_anatomy = x
        x_pathology = self.res_l1_pathology(x_pathology)
        x_anatomy = self.res_l1_anatomy(x_anatomy)
        x_pathology = F.relu(x_pathology)
        x_anatomy = F.relu(x_anatomy)

        x_pathology = self.res_l2_pathology(x_pathology)
        x_anatomy = self.res_l2_anatomy(x_anatomy)

        out_emb_pathology = rearrange(x_pathology, "(b n) d -> b n d", b=batch_size)
        out_emb_anatomy = rearrange(x_anatomy, "(b n) d -> b n d", b=batch_size)
        return out_emb_pathology, out_emb_anatomy

    def forward(self, images, labels, smaple_index=None, is_train=True, no_cl=False):
        B = images.shape[0]
        device = images.device
        """ Visual Backbone """
        x_pathology, x_anatomy = self.image_encoder(images)  # batch_size,patch_num,dim

        features_anatomy = x_anatomy.transpose(0, 1)  # patch_num b dim
        features_pathology = x_pathology.transpose(0, 1)  # patch_num b dim
        query_embed_pathology = self.disease_embedding_layer(self.disease_book)
        query_embed_anatomy = self.disease_embedding_layer(self.ana_book)
        query_embed_pathology = query_embed_pathology.unsqueeze(1).repeat(1, B, 1)
        query_embed_anatomy = query_embed_anatomy.unsqueeze(1).repeat(1, B, 1)
        features_anatomy, ws_anatomy = self.decoder_anatomy(
            query_embed_anatomy,
            features_anatomy,
            memory_key_padding_mask=None,
            pos=None,
            query_pos=None,
        )
        features_pathology, ws_pathology = self.decoder_pathology(
            query_embed_pathology,
            features_pathology,
            memory_key_padding_mask=None,
            pos=None,
            query_pos=None,
        )

        out_pathology = self.dropout_feas_pathology(features_pathology)
        out_anatomy = self.dropout_feas_anatomy(features_anatomy)

        x_pathology = self.classifier_pathology(out_pathology).transpose(0, 1)  # B query Atributes
        x_anatomy = self.classifier_anatomy(out_anatomy).transpose(0, 1)  # B query Atributes

        return x_pathology, x_anatomy, ws_pathology, ws_anatomy, out_pathology, out_anatomy

    @staticmethod
    def _init_weights(module):
        r"""Initialize weights like BERT - N(0.0, 0.02), bias = 0."""

        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)

        elif isinstance(module, nn.MultiheadAttention):
            module.in_proj_weight.data.normal_(mean=0.0, std=0.02)
            module.out_proj.weight.data.normal_(mean=0.0, std=0.02)

        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()