File size: 7,373 Bytes
a256709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import argparse
import os
import yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import warnings
warnings.filterwarnings("ignore")
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from sklearn.metrics import roc_auc_score, precision_recall_curve, accuracy_score
from models.model_MeDSLIP import MeDSLIP
from dataset.dataset import Chestxray14_Dataset
from models.tokenization_bert import BertTokenizer
from tqdm import tqdm
chexray14_cls = [
"atelectasis",
"cardiomegaly",
"effusion",
"infiltrate",
"mass",
"nodule",
"pneumonia",
"pneumothorax",
"consolidation",
"edema",
"emphysema",
"tail_abnorm_obs",
"thicken",
"hernia",
] # Fibrosis seldom appears in MIMIC_CXR and is divided into the 'tail_abnorm_obs' entitiy.
original_class = [
"normal",
"clear",
"sharp",
"sharply",
"unremarkable",
"intact",
"stable",
"free",
"effusion",
"opacity",
"pneumothorax",
"edema",
"atelectasis",
"tube",
"consolidation",
"process",
"abnormality",
"enlarge",
"tip",
"low",
"pneumonia",
"line",
"congestion",
"catheter",
"cardiomegaly",
"fracture",
"air",
"tortuous",
"lead",
"disease",
"calcification",
"prominence",
"device",
"engorgement",
"picc",
"clip",
"elevation",
"expand",
"nodule",
"wire",
"fluid",
"degenerative",
"pacemaker",
"thicken",
"marking",
"scar",
"hyperinflate",
"blunt",
"loss",
"widen",
"collapse",
"density",
"emphysema",
"aerate",
"mass",
"crowd",
"infiltrate",
"obscure",
"deformity",
"hernia",
"drainage",
"distention",
"shift",
"stent",
"pressure",
"lesion",
"finding",
"borderline",
"hardware",
"dilation",
"chf",
"redistribution",
"aspiration",
"tail_abnorm_obs",
"excluded_obs",
]
mapping = []
for disease in chexray14_cls:
if disease in original_class:
mapping.append(original_class.index(disease))
else:
mapping.append(-1)
MIMIC_mapping = [_ for i, _ in enumerate(mapping) if _ != -1]
chexray14_mapping = [i for i, _ in enumerate(mapping) if _ != -1]
target_class = [chexray14_cls[i] for i in chexray14_mapping]
def compute_AUCs(gt, pred, n_class):
"""Computes Area Under the Curve (AUC) from prediction scores.
Args:
gt: Pytorch tensor on GPU, shape = [n_samples, n_classes]
true binary labels.
pred: Pytorch tensor on GPU, shape = [n_samples, n_classes]
can either be probability estimates of the positive class,
confidence values, or binary decisions.
Returns:
List of AUROCs of all classes.
"""
AUROCs = []
gt_np = gt.cpu().numpy()
pred_np = pred.cpu().numpy()
for i in range(n_class):
AUROCs.append(roc_auc_score(gt_np[:, i], pred_np[:, i]))
return AUROCs
def get_tokenizer(tokenizer, target_text):
target_tokenizer = tokenizer(
list(target_text),
padding="max_length",
truncation=True,
max_length=64,
return_tensors="pt",
)
return target_tokenizer
def test(args, config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Total CUDA devices: ", torch.cuda.device_count())
torch.set_default_tensor_type("torch.FloatTensor")
test_dataset = Chestxray14_Dataset(config["test_file"], is_train=False)
test_dataloader = DataLoader(
test_dataset,
batch_size=config["test_batch_size"],
num_workers=30,
pin_memory=True,
sampler=None,
shuffle=True,
collate_fn=None,
drop_last=False,
)
print("Creating book")
json_book = json.load(open(config["disease_book"], "r"))
disease_book = [json_book[i] for i in json_book]
tokenizer = BertTokenizer.from_pretrained(config["text_encoder"])
disease_book_tokenizer = get_tokenizer(tokenizer, disease_book).to(device)
print("Creating model")
model = MeDSLIP(config, disease_book_tokenizer)
if args.ddp:
model = nn.DataParallel(
model, device_ids=[i for i in range(torch.cuda.device_count())]
)
model = model.to(device)
print("Load model from checkpoint:", args.model_path)
checkpoint = torch.load(args.model_path, map_location="cpu")
state_dict = checkpoint["model"]
model.load_state_dict(state_dict)
# initialize the ground truth and output tensor
gt = torch.FloatTensor()
gt = gt.to(device)
pred = torch.FloatTensor()
pred = pred.to(device)
print("Start testing")
model.eval()
loop = tqdm(test_dataloader)
for i, sample in enumerate(loop):
loop.set_description(f"Testing: {i+1}/{len(test_dataloader)}")
image = sample["image"]
label = sample["label"][:, chexray14_mapping].float().to(device)
gt = torch.cat((gt, label), 0)
input_image = image.to(device, non_blocking=True)
with torch.no_grad():
pred_class = model(input_image) # batch_size,num_class,dim
pred_class = F.softmax(pred_class.reshape(-1, 2)).reshape(
-1, len(original_class), 2
)
pred_class = pred_class[:, MIMIC_mapping, 1]
pred = torch.cat((pred, pred_class), 0)
AUROCs = compute_AUCs(gt, pred, len(target_class))
AUROC_avg = np.array(AUROCs).mean()
print("The average AUROC is {AUROC_avg:.4f}".format(AUROC_avg=AUROC_avg))
for i in range(len(target_class)):
print("The AUROC of {} is {}".format(target_class[i], AUROCs[i]))
max_f1s = []
accs = []
for i in range(len(target_class)):
gt_np = gt[:, i].cpu().numpy()
pred_np = pred[:, i].cpu().numpy()
precision, recall, thresholds = precision_recall_curve(gt_np, pred_np)
numerator = 2 * recall * precision
denom = recall + precision
f1_scores = np.divide(
numerator, denom, out=np.zeros_like(denom), where=(denom != 0)
)
max_f1 = np.max(f1_scores)
max_f1_thresh = thresholds[np.argmax(f1_scores)]
max_f1s.append(max_f1)
accs.append(accuracy_score(gt_np, pred_np > max_f1_thresh))
f1_avg = np.array(max_f1s).mean()
acc_avg = np.array(accs).mean()
print("The average f1 is {F1_avg:.4f}".format(F1_avg=f1_avg))
print("The average ACC is {ACC_avg:.4f}".format(ACC_avg=acc_avg))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
default="Sample_zero-shot_Classification_CXR14/configs/MeDSLIP_config.yaml",
)
parser.add_argument("--model_path", default="MeDSLIP_resnet50.pth")
parser.add_argument("--device", default="cuda")
parser.add_argument("--gpu", type=str, default="0", help="gpu")
parser.add_argument("--ddp", action="store_true", help="whether to use ddp")
args = parser.parse_args()
config = yaml.load(open(args.config, "r"), Loader=yaml.Loader)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.gpu != "-1":
torch.cuda.current_device()
torch.cuda._initialized = True
test(args, config)
|