|
""" AdamW Optimizer |
|
Impl copied from PyTorch master |
|
""" |
|
import math |
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class AdamW(Optimizer): |
|
r"""Implements AdamW algorithm. |
|
|
|
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. |
|
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay coefficient (default: 1e-2) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) |
|
|
|
.. _Adam\: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _Decoupled Weight Decay Regularization: |
|
https://arxiv.org/abs/1711.05101 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
weight_decay=1e-2, |
|
amsgrad=False, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict( |
|
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad |
|
) |
|
super(AdamW, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(AdamW, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("amsgrad", False) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
|
|
|
|
p.data.mul_(1 - group["lr"] * group["weight_decay"]) |
|
|
|
|
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"Adam does not support sparse gradients, please consider SparseAdam instead" |
|
) |
|
amsgrad = group["amsgrad"] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like(p.data) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p.data) |
|
if amsgrad: |
|
|
|
state["max_exp_avg_sq"] = torch.zeros_like(p.data) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
if amsgrad: |
|
max_exp_avg_sq = state["max_exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
bias_correction1 = 1 - beta1 ** state["step"] |
|
bias_correction2 = 1 - beta2 ** state["step"] |
|
|
|
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
if amsgrad: |
|
|
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
|
|
|
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_( |
|
group["eps"] |
|
) |
|
else: |
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_( |
|
group["eps"] |
|
) |
|
|
|
step_size = group["lr"] / bias_correction1 |
|
|
|
p.data.addcdiv_(-step_size, exp_avg, denom) |
|
|
|
return loss |
|
|