|
import torch |
|
from torch.optim import Optimizer |
|
|
|
|
|
class Nadam(Optimizer): |
|
"""Implements Nadam algorithm (a variant of Adam based on Nesterov momentum). |
|
|
|
It has been proposed in `Incorporating Nesterov Momentum into Adam`__. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 2e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
schedule_decay (float, optional): momentum schedule decay (default: 4e-3) |
|
|
|
__ http://cs229.stanford.edu/proj2015/054_report.pdf |
|
__ http://www.cs.toronto.edu/~fritz/absps/momentum.pdf |
|
|
|
Originally taken from: https://github.com/pytorch/pytorch/pull/1408 |
|
NOTE: Has potential issues but does work well on some problems. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=2e-3, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
weight_decay=0, |
|
schedule_decay=4e-3, |
|
): |
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
schedule_decay=schedule_decay, |
|
) |
|
super(Nadam, self).__init__(params, defaults) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
state["m_schedule"] = 1.0 |
|
state["exp_avg"] = grad.new().resize_as_(grad).zero_() |
|
state["exp_avg_sq"] = grad.new().resize_as_(grad).zero_() |
|
|
|
|
|
m_schedule = state["m_schedule"] |
|
schedule_decay = group["schedule_decay"] |
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
eps = group["eps"] |
|
state["step"] += 1 |
|
t = state["step"] |
|
|
|
if group["weight_decay"] != 0: |
|
grad = grad.add(group["weight_decay"], p.data) |
|
|
|
momentum_cache_t = beta1 * (1.0 - 0.5 * (0.96 ** (t * schedule_decay))) |
|
momentum_cache_t_1 = beta1 * ( |
|
1.0 - 0.5 * (0.96 ** ((t + 1) * schedule_decay)) |
|
) |
|
m_schedule_new = m_schedule * momentum_cache_t |
|
m_schedule_next = m_schedule * momentum_cache_t * momentum_cache_t_1 |
|
state["m_schedule"] = m_schedule_new |
|
|
|
|
|
exp_avg.mul_(beta1).add_(1.0 - beta1, grad) |
|
exp_avg_sq.mul_(beta2).addcmul_(1.0 - beta2, grad, grad) |
|
exp_avg_sq_prime = exp_avg_sq / (1.0 - beta2 ** t) |
|
denom = exp_avg_sq_prime.sqrt_().add_(eps) |
|
|
|
p.data.addcdiv_( |
|
-group["lr"] * (1.0 - momentum_cache_t) / (1.0 - m_schedule_new), |
|
grad, |
|
denom, |
|
) |
|
p.data.addcdiv_( |
|
-group["lr"] * momentum_cache_t_1 / (1.0 - m_schedule_next), |
|
exp_avg, |
|
denom, |
|
) |
|
|
|
return loss |
|
|