|
""" Cosine Scheduler |
|
|
|
Cosine LR schedule with warmup, cycle/restarts, noise. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import logging |
|
import math |
|
import numpy as np |
|
import torch |
|
|
|
from .scheduler import Scheduler |
|
|
|
from pdb import set_trace as breakpoint |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
class CosineLRScheduler(Scheduler): |
|
""" |
|
Cosine decay with restarts. |
|
This is described in the paper https://arxiv.org/abs/1608.03983. |
|
|
|
Inspiration from |
|
https://github.com/allenai/allennlp/blob/master/allennlp/training/learning_rate_schedulers/cosine.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
optimizer: torch.optim.Optimizer, |
|
t_initial: int, |
|
t_mul: float = 1.0, |
|
lr_min: float = 0.0, |
|
decay_rate: float = 1.0, |
|
warmup_t=0, |
|
warmup_lr_init=0, |
|
warmup_prefix=True, |
|
cycle_limit=0, |
|
t_in_epochs=True, |
|
noise_range_t=None, |
|
noise_pct=0.67, |
|
noise_std=1.0, |
|
noise_seed=42, |
|
initialize=True, |
|
) -> None: |
|
super().__init__( |
|
optimizer, |
|
param_group_field="lr", |
|
noise_range_t=noise_range_t, |
|
noise_pct=noise_pct, |
|
noise_std=noise_std, |
|
noise_seed=noise_seed, |
|
initialize=initialize, |
|
) |
|
|
|
assert t_initial > 0 |
|
assert lr_min >= 0 |
|
if t_initial == 1 and t_mul == 1 and decay_rate == 1: |
|
_logger.warning( |
|
"Cosine annealing scheduler will have no effect on the learning " |
|
"rate since t_initial = t_mul = eta_mul = 1." |
|
) |
|
self.t_initial = t_initial |
|
self.t_mul = t_mul |
|
self.lr_min = lr_min |
|
self.decay_rate = decay_rate |
|
self.cycle_limit = cycle_limit |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.warmup_prefix = warmup_prefix |
|
self.t_in_epochs = t_in_epochs |
|
if self.warmup_t: |
|
self.warmup_steps = [ |
|
(v - warmup_lr_init) / self.warmup_t for v in self.base_values |
|
] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
def _get_lr(self, t): |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
if self.warmup_prefix: |
|
t = t - self.warmup_t |
|
|
|
if self.t_mul != 1: |
|
i = math.floor( |
|
math.log(1 - t / self.t_initial * (1 - self.t_mul), self.t_mul) |
|
) |
|
t_i = self.t_mul ** i * self.t_initial |
|
t_curr = t - (1 - self.t_mul ** i) / (1 - self.t_mul) * self.t_initial |
|
else: |
|
i = t // self.t_initial |
|
t_i = self.t_initial |
|
t_curr = t - (self.t_initial * i) |
|
|
|
gamma = self.decay_rate ** i |
|
lr_min = self.lr_min * gamma |
|
lr_max_values = [v * gamma for v in self.base_values] |
|
|
|
if self.cycle_limit == 0 or (self.cycle_limit > 0 and i < self.cycle_limit): |
|
lrs = [ |
|
lr_min |
|
+ 0.5 * (lr_max - lr_min) * (1 + math.cos(math.pi * t_curr / t_i)) |
|
for lr_max in lr_max_values |
|
] |
|
else: |
|
lrs = [self.lr_min for _ in self.base_values] |
|
|
|
return lrs |
|
|
|
def get_epoch_values(self, epoch: int): |
|
if self.t_in_epochs: |
|
return self._get_lr(epoch) |
|
else: |
|
return None |
|
|
|
def get_update_values(self, num_updates: int): |
|
if not self.t_in_epochs: |
|
return self._get_lr(num_updates) |
|
else: |
|
return None |
|
|
|
def get_cycle_length(self, cycles=0): |
|
if not cycles: |
|
cycles = self.cycle_limit |
|
cycles = max(1, cycles) |
|
if self.t_mul == 1.0: |
|
return self.t_initial * cycles |
|
else: |
|
return int( |
|
math.floor( |
|
-self.t_initial * (self.t_mul ** cycles - 1) / (1 - self.t_mul) |
|
) |
|
) |
|
|