|
""" |
|
SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py |
|
|
|
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 |
|
Code: https://github.com/clovaai/AdamP |
|
|
|
Copyright (c) 2020-present NAVER Corp. |
|
MIT license |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.optim.optimizer import Optimizer, required |
|
import math |
|
|
|
|
|
class SGDP(Optimizer): |
|
def __init__( |
|
self, |
|
params, |
|
lr=required, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
eps=1e-8, |
|
delta=0.1, |
|
wd_ratio=0.1, |
|
): |
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
dampening=dampening, |
|
weight_decay=weight_decay, |
|
nesterov=nesterov, |
|
eps=eps, |
|
delta=delta, |
|
wd_ratio=wd_ratio, |
|
) |
|
super(SGDP, self).__init__(params, defaults) |
|
|
|
def _channel_view(self, x): |
|
return x.view(x.size(0), -1) |
|
|
|
def _layer_view(self, x): |
|
return x.view(1, -1) |
|
|
|
def _cosine_similarity(self, x, y, eps, view_func): |
|
x = view_func(x) |
|
y = view_func(y) |
|
|
|
x_norm = x.norm(dim=1).add_(eps) |
|
y_norm = y.norm(dim=1).add_(eps) |
|
dot = (x * y).sum(dim=1) |
|
|
|
return dot.abs() / x_norm / y_norm |
|
|
|
def _projection(self, p, grad, perturb, delta, wd_ratio, eps): |
|
wd = 1 |
|
expand_size = [-1] + [1] * (len(p.shape) - 1) |
|
for view_func in [self._channel_view, self._layer_view]: |
|
|
|
cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func) |
|
|
|
if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)): |
|
p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps) |
|
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size) |
|
wd = wd_ratio |
|
|
|
return perturb, wd |
|
|
|
return perturb, wd |
|
|
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
weight_decay = group["weight_decay"] |
|
momentum = group["momentum"] |
|
dampening = group["dampening"] |
|
nesterov = group["nesterov"] |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["momentum"] = torch.zeros_like(p.data) |
|
|
|
|
|
buf = state["momentum"] |
|
buf.mul_(momentum).add_(1 - dampening, grad) |
|
if nesterov: |
|
d_p = grad + momentum * buf |
|
else: |
|
d_p = buf |
|
|
|
|
|
wd_ratio = 1 |
|
if len(p.shape) > 1: |
|
d_p, wd_ratio = self._projection( |
|
p, grad, d_p, group["delta"], group["wd_ratio"], group["eps"] |
|
) |
|
|
|
|
|
if weight_decay != 0: |
|
p.data.mul_( |
|
1 |
|
- group["lr"] |
|
* group["weight_decay"] |
|
* wd_ratio |
|
/ (1 - momentum) |
|
) |
|
|
|
|
|
p.data.add_(-group["lr"], d_p) |
|
|
|
return loss |
|
|