|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for Bert.""" |
|
|
|
|
|
import collections |
|
import os |
|
import unicodedata |
|
from typing import List, Optional, Tuple |
|
|
|
from transformers.tokenization_utils import ( |
|
PreTrainedTokenizer, |
|
_is_control, |
|
_is_punctuation, |
|
_is_whitespace, |
|
) |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", |
|
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", |
|
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", |
|
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", |
|
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt", |
|
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", |
|
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", |
|
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", |
|
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt", |
|
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt", |
|
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", |
|
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", |
|
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt", |
|
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", |
|
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt", |
|
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt", |
|
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt", |
|
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt", |
|
} |
|
} |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"bert-base-uncased": 512, |
|
"bert-large-uncased": 512, |
|
"bert-base-cased": 512, |
|
"bert-large-cased": 512, |
|
"bert-base-multilingual-uncased": 512, |
|
"bert-base-multilingual-cased": 512, |
|
"bert-base-chinese": 512, |
|
"bert-base-german-cased": 512, |
|
"bert-large-uncased-whole-word-masking": 512, |
|
"bert-large-cased-whole-word-masking": 512, |
|
"bert-large-uncased-whole-word-masking-finetuned-squad": 512, |
|
"bert-large-cased-whole-word-masking-finetuned-squad": 512, |
|
"bert-base-cased-finetuned-mrpc": 512, |
|
"bert-base-german-dbmdz-cased": 512, |
|
"bert-base-german-dbmdz-uncased": 512, |
|
"TurkuNLP/bert-base-finnish-cased-v1": 512, |
|
"TurkuNLP/bert-base-finnish-uncased-v1": 512, |
|
"wietsedv/bert-base-dutch-cased": 512, |
|
} |
|
|
|
PRETRAINED_INIT_CONFIGURATION = { |
|
"bert-base-uncased": {"do_lower_case": True}, |
|
"bert-large-uncased": {"do_lower_case": True}, |
|
"bert-base-cased": {"do_lower_case": False}, |
|
"bert-large-cased": {"do_lower_case": False}, |
|
"bert-base-multilingual-uncased": {"do_lower_case": True}, |
|
"bert-base-multilingual-cased": {"do_lower_case": False}, |
|
"bert-base-chinese": {"do_lower_case": False}, |
|
"bert-base-german-cased": {"do_lower_case": False}, |
|
"bert-large-uncased-whole-word-masking": {"do_lower_case": True}, |
|
"bert-large-cased-whole-word-masking": {"do_lower_case": False}, |
|
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, |
|
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, |
|
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, |
|
"bert-base-german-dbmdz-cased": {"do_lower_case": False}, |
|
"bert-base-german-dbmdz-uncased": {"do_lower_case": True}, |
|
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, |
|
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, |
|
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, |
|
} |
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip("\n") |
|
vocab[token] = index |
|
return vocab |
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
|
|
class BertTokenizer(PreTrainedTokenizer): |
|
r""" |
|
Construct a BERT tokenizer. Based on WordPiece. |
|
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. |
|
Users should refer to this superclass for more information regarding those methods. |
|
Args: |
|
vocab_file (:obj:`str`): |
|
File containing the vocabulary. |
|
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to do basic tokenization before WordPiece. |
|
never_split (:obj:`Iterable`, `optional`): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
:obj:`do_basic_tokenize=True` |
|
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to tokenize Chinese characters. |
|
This should likely be deactivated for Japanese (see this `issue |
|
<https://github.com/huggingface/transformers/issues/328>`__). |
|
strip_accents: (:obj:`bool`, `optional`): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for :obj:`lowercase` (as in the original BERT). |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
do_lower_case=True, |
|
do_basic_tokenize=True, |
|
never_split=None, |
|
unk_token="[UNK]", |
|
sep_token="[SEP]", |
|
pad_token="[PAD]", |
|
cls_token="[CLS]", |
|
mask_token="[MASK]", |
|
tokenize_chinese_chars=True, |
|
strip_accents=None, |
|
**kwargs |
|
): |
|
super().__init__( |
|
do_lower_case=do_lower_case, |
|
do_basic_tokenize=do_basic_tokenize, |
|
never_split=never_split, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
mask_token=mask_token, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
**kwargs, |
|
) |
|
|
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " |
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format( |
|
vocab_file |
|
) |
|
) |
|
self.vocab = load_vocab(vocab_file) |
|
self.ids_to_tokens = collections.OrderedDict( |
|
[(ids, tok) for tok, ids in self.vocab.items()] |
|
) |
|
self.do_basic_tokenize = do_basic_tokenize |
|
if do_basic_tokenize: |
|
self.basic_tokenizer = BasicTokenizer( |
|
do_lower_case=do_lower_case, |
|
never_split=never_split, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
) |
|
self.wordpiece_tokenizer = WordpieceTokenizer( |
|
vocab=self.vocab, unk_token=self.unk_token |
|
) |
|
|
|
@property |
|
def do_lower_case(self): |
|
return self.basic_tokenizer.do_lower_case |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.vocab) |
|
|
|
def get_vocab(self): |
|
return dict(self.vocab, **self.added_tokens_encoder) |
|
|
|
def _tokenize(self, text): |
|
split_tokens = [] |
|
if self.do_basic_tokenize: |
|
for token in self.basic_tokenizer.tokenize( |
|
text, never_split=self.all_special_tokens |
|
): |
|
|
|
|
|
if token in self.basic_tokenizer.never_split: |
|
split_tokens.append(token) |
|
else: |
|
split_tokens += self.wordpiece_tokenizer.tokenize(token) |
|
else: |
|
split_tokens = self.wordpiece_tokenizer.tokenize(text) |
|
return split_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
""" Converts a token (str) in an id using the vocab. """ |
|
return self.vocab.get(token, self.vocab.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.ids_to_tokens.get(index, self.unk_token) |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
""" Converts a sequence of tokens (string) in a single string. """ |
|
out_string = " ".join(tokens).replace(" ##", "").strip() |
|
return out_string |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
- single sequence: ``[CLS] X `` |
|
- pair of sequences: ``[CLS] A [SEP] B [SEP]`` |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return [self.cls_token_id] + token_ids_0 |
|
cls = [self.cls_token_id] |
|
sep = [self.sep_token_id] |
|
return cls + token_ids_0 + sep + token_ids_1 + sep |
|
|
|
def get_special_tokens_mask( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None, |
|
already_has_special_tokens: bool = False, |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer ``prepare_for_model`` method. |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
Returns: |
|
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
if token_ids_1 is not None: |
|
raise ValueError( |
|
"You should not supply a second sequence if the provided sequence of " |
|
"ids is already formatted with special tokens for the model." |
|
) |
|
return list( |
|
map( |
|
lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, |
|
token_ids_0, |
|
) |
|
) |
|
|
|
if token_ids_1 is not None: |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
return [1] + ([0] * len(token_ids_0)) + [1] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence |
|
pair mask has the following format: |
|
:: |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). |
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given |
|
sequence(s). |
|
""" |
|
sep = [self.sep_token_id] |
|
cls = [self.cls_token_id] |
|
if token_ids_1 is None: |
|
return len(cls + token_ids_0 + sep) * [0] |
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary( |
|
self, save_directory: str, filename_prefix: Optional[str] = None |
|
) -> Tuple[str]: |
|
index = 0 |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") |
|
+ VOCAB_FILES_NAMES["vocab_file"], |
|
) |
|
else: |
|
vocab_file = ( |
|
filename_prefix + "-" if filename_prefix else "" |
|
) + save_directory |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
"Saving vocabulary to {}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!".format( |
|
vocab_file |
|
) |
|
) |
|
index = token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|
|
|
|
class BasicTokenizer(object): |
|
""" |
|
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). |
|
Args: |
|
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
never_split (:obj:`Iterable`, `optional`): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
:obj:`do_basic_tokenize=True` |
|
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not to tokenize Chinese characters. |
|
This should likely be deactivated for Japanese (see this `issue |
|
<https://github.com/huggingface/transformers/issues/328>`__). |
|
strip_accents: (:obj:`bool`, `optional`): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for :obj:`lowercase` (as in the original BERT). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
do_lower_case=True, |
|
never_split=None, |
|
tokenize_chinese_chars=True, |
|
strip_accents=None, |
|
): |
|
if never_split is None: |
|
never_split = [] |
|
self.do_lower_case = do_lower_case |
|
self.never_split = set(never_split) |
|
self.tokenize_chinese_chars = tokenize_chinese_chars |
|
self.strip_accents = strip_accents |
|
|
|
def tokenize(self, text, never_split=None): |
|
""" |
|
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see |
|
WordPieceTokenizer. |
|
Args: |
|
**never_split**: (`optional`) list of str |
|
Kept for backward compatibility purposes. Now implemented directly at the base class level (see |
|
:func:`PreTrainedTokenizer.tokenize`) List of token not to split. |
|
""" |
|
|
|
never_split = ( |
|
self.never_split.union(set(never_split)) |
|
if never_split |
|
else self.never_split |
|
) |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.tokenize_chinese_chars: |
|
text = self._tokenize_chinese_chars(text) |
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if token not in never_split: |
|
if self.do_lower_case: |
|
token = token.lower() |
|
if self.strip_accents is not False: |
|
token = self._run_strip_accents(token) |
|
elif self.strip_accents: |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token, never_split)) |
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text, never_split=None): |
|
"""Splits punctuation on a piece of text.""" |
|
if never_split is not None and text in never_split: |
|
return [text] |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
(cp >= 0x4E00 and cp <= 0x9FFF) |
|
or (cp >= 0x3400 and cp <= 0x4DBF) |
|
or (cp >= 0x20000 and cp <= 0x2A6DF) |
|
or (cp >= 0x2A700 and cp <= 0x2B73F) |
|
or (cp >= 0x2B740 and cp <= 0x2B81F) |
|
or (cp >= 0x2B820 and cp <= 0x2CEAF) |
|
or (cp >= 0xF900 and cp <= 0xFAFF) |
|
or (cp >= 0x2F800 and cp <= 0x2FA1F) |
|
): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xFFFD or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform |
|
tokenization using the given vocabulary. |
|
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`. |
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through `BasicTokenizer`. |
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|