""" Plateau Scheduler Adapts PyTorch plateau scheduler and allows application of noise, warmup. Hacked together by / Copyright 2020 Ross Wightman """ import torch from .scheduler import Scheduler class PlateauLRScheduler(Scheduler): """Decay the LR by a factor every time the validation loss plateaus.""" def __init__( self, optimizer, decay_rate=0.1, patience_t=10, verbose=True, threshold=1e-4, cooldown_t=0, warmup_t=0, warmup_lr_init=0, lr_min=0, mode="max", noise_range_t=None, noise_type="normal", noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize=True, ): super().__init__(optimizer, "lr", initialize=initialize) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, patience=patience_t, factor=decay_rate, verbose=verbose, threshold=threshold, cooldown=cooldown_t, mode=mode, min_lr=lr_min, ) self.noise_range = noise_range_t self.noise_pct = noise_pct self.noise_type = noise_type self.noise_std = noise_std self.noise_seed = noise_seed if noise_seed is not None else 42 self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init if self.warmup_t: self.warmup_steps = [ (v - warmup_lr_init) / self.warmup_t for v in self.base_values ] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] self.restore_lr = None def state_dict(self): return { "best": self.lr_scheduler.best, "last_epoch": self.lr_scheduler.last_epoch, } def load_state_dict(self, state_dict): self.lr_scheduler.best = state_dict["best"] if "last_epoch" in state_dict: self.lr_scheduler.last_epoch = state_dict["last_epoch"] # override the base class step fn completely def step(self, epoch, metric=None): if epoch <= self.warmup_t: lrs = [self.warmup_lr_init + epoch * s for s in self.warmup_steps] super().update_groups(lrs) else: if self.restore_lr is not None: # restore actual LR from before our last noise perturbation before stepping base for i, param_group in enumerate(self.optimizer.param_groups): param_group["lr"] = self.restore_lr[i] self.restore_lr = None self.lr_scheduler.step(metric, epoch) # step the base scheduler if self.noise_range is not None: if isinstance(self.noise_range, (list, tuple)): apply_noise = self.noise_range[0] <= epoch < self.noise_range[1] else: apply_noise = epoch >= self.noise_range if apply_noise: self._apply_noise(epoch) def _apply_noise(self, epoch): g = torch.Generator() g.manual_seed(self.noise_seed + epoch) if self.noise_type == "normal": while True: # resample if noise out of percent limit, brute force but shouldn't spin much noise = torch.randn(1, generator=g).item() if abs(noise) < self.noise_pct: break else: noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct # apply the noise on top of previous LR, cache the old value so we can restore for normal # stepping of base scheduler restore_lr = [] for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group["lr"]) restore_lr.append(old_lr) new_lr = old_lr + old_lr * noise param_group["lr"] = new_lr self.restore_lr = restore_lr