File size: 6,075 Bytes
4a1f918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np

PATCH_SIZE = 256  # Size of the patches
OVERLAP = 32  # Amount of overlap between patches

def split_image_into_patches(image):
    height, width, _ = image.shape
    patches = []
    
    for y in range(0, height-PATCH_SIZE+1, PATCH_SIZE-OVERLAP):
        for x in range(0, width-PATCH_SIZE+1, PATCH_SIZE-OVERLAP):
            patch = (y,x,image[y:y+PATCH_SIZE, x:x+PATCH_SIZE])
            patches.append(patch)
    
    return patches

def stitch_patches_to_image(patches, image_shape):
    stitched_image = np.zeros(image_shape)
    overlap_mask = np.zeros(image_shape[:2])+1e-10
    
    for patch in patches:
        y, x, p = patch
        try:
            # Add the patch to the stitched image
            stitched_image[y:y+PATCH_SIZE, x:x+PATCH_SIZE] += p
            overlap_mask[y:y+PATCH_SIZE, x:x+PATCH_SIZE] += 1
        except:
            print(p.shape)
            print(y,x)
            print(image_shape)
            1/0
        
    # Normalize the stitched image by dividing with the overlap count
    stitched_image = ((stitched_image/overlap_mask)>0.5)+0
    
    return stitched_image.astype(np.uint8)

import torch
import yaml
import sys
import copy
import os
sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/biastuning/")

from data_utils import *
from model import *
from utils import *

label_names = ['Left Prograsp Forceps', 'Maryland Bipolar Forceps', 'Right Prograsp Forceps', 'Left Large Needle Driver', 'Right Large Needle Driver']
visualize_li = [[1,0,0],[0,1,0],[1,0,0], [0,0,1], [0,0,1]]
label_dict = {}
visualize_dict = {}
for i,ln in enumerate(label_names):
        label_dict[ln] = i
        visualize_dict[ln] = visualize_li[i]

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--data_folder', default='config_tmp.yml',
                        help='data folder file path')

    parser.add_argument('--data_config', default='config_tmp.yml',
                        help='data config file path')

    parser.add_argument('--model_config', default='model_baseline.yml',
                        help='model config file path')

    parser.add_argument('--pretrained_path', default=None,
                        help='pretrained model path')

    parser.add_argument('--save_path', default='checkpoints/temp.pth',
                        help='pretrained model path')

    parser.add_argument('--device', default='cuda:0', help='device to train on')

    parser.add_argument('--labels_of_interest', default='Left Prograsp Forceps,Maryland Bipolar Forceps,Right Prograsp Forceps,Left Large Needle Driver,Right Large Needle Driver', help='labels of interest')

    parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument')

    args = parser.parse_args()

    return args

def main():
    args = parse_args()
    with open(args.data_config, 'r') as f:
        data_config = yaml.load(f, Loader=yaml.FullLoader)
    with open(args.model_config, 'r') as f:
        model_config = yaml.load(f, Loader=yaml.FullLoader)
    labels_of_interest = args.labels_of_interest.split(',')
    codes = args.codes.split(',')
    codes = [int(c) for c in codes]


    #make folder to save visualizations
    os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True)
    os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True)

    #load model
    model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device)
    model.load_state_dict(torch.load(args.pretrained_path, map_location=args.device))
    model = model.eval()
    model = model.to(args.device)

    #load data transform
    data_transform = ENDOVIS_Transform(config=data_config)

    #load data
    for img_name in sorted(os.listdir(args.data_folder)):
        img_path = (os.path.join(args.data_folder,img_name))
        # print(img_path)
        original_img = torch.as_tensor(np.array(Image.open(img_path).convert("RGB")))
        patches = split_image_into_patches(original_img)
        patch_masks = []

        for y,x,p in patches:
            img = p.permute(2,0,1)
            #make a dummy mask of shape 1XHXW
            label = torch.zeros(img.shape)[0].unsqueeze(0)
            img, _ = data_transform(img, label, is_train=False, apply_norm=True, crop=False, resize=False)

            #get image embeddings
            img = img.unsqueeze(0).to(args.device)  #1XCXHXW
            img_embeds = model.get_image_embeddings(img)

            # generate masks for all labels of interest
            img_embeds_repeated = img_embeds.repeat(len(labels_of_interest),1,1,1)
            x_text = [t for t in labels_of_interest]
            masks = model.get_masks_for_multiple_labels(img_embeds_repeated, x_text).cpu()

            #for now, only handle one class at a time
            masks, max_idxs = torch.max(masks,dim=0)
            patch_masks.append((y,x,masks.numpy())) 

            # argmax_masks = torch.argmax(masks, dim=0)
            # final_mask = torch.zeros(masks[0].shape)
            # final_mask_rescaled = torch.zeros(masks[0].shape).unsqueeze(-1).repeat(1,1,3)
        #save masks
        # for i in range(final_mask.shape[0]):
        #     for j in range(final_mask.shape[1]):
        #         final_mask[i,j] = codes[argmax_masks[i,j]] if masks[argmax_masks[i,j],i,j]>=0.5 else 0
        #         final_mask_rescaled[i,j] = torch.Tensor(visualize_dict[(labels_of_interest[argmax_masks[i,j]])] if masks[argmax_masks[i,j],i,j]>=0.5 else [0,0,0])

        #stitch masks
        print("original shape: ", original_img.shape)
        final_mask = stitch_patches_to_image(patch_masks, original_img.shape[:2])
        print("final mask shape: ",final_mask.shape)
        save_im = Image.fromarray(final_mask)
        save_im.save(os.path.join(args.save_path,'preds', img_name))

        # plt.imshow(final_mask_rescaled,cmap='gray')
        # plt.savefig(os.path.join(args.save_path,'rescaled_preds', img_name))
        # plt.close()
        break

if __name__ == '__main__':
    main()