File size: 7,490 Bytes
4a1f918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import yaml
import sys
import copy
import os
sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/SVDSAM/")

from data_utils import *
from model import *
from utils import *
from data_transforms.glas_transform import GLAS_Transform

label_names = ['Glands']
label_dict = {}
# visualize_dict = {}
for i,ln in enumerate(label_names):
        label_dict[ln] = i
        # visualize_dict[ln] = visualize_li[i]

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--data_folder', default='config_tmp.yml',
                        help='data folder file path')

    parser.add_argument('--data_config', default='config_tmp.yml',
                        help='data config file path')

    parser.add_argument('--model_config', default='model_baseline.yml',
                        help='model config file path')

    parser.add_argument('--pretrained_path', default=None,
                        help='pretrained model path')

    parser.add_argument('--save_path', default='checkpoints/temp.pth',
                        help='pretrained model path')

    parser.add_argument('--gt_path', default='',
                        help='ground truth path')

    parser.add_argument('--device', default='cuda:0', help='device to train on')

    parser.add_argument('--labels_of_interest', default='Left Prograsp Forceps,Maryland Bipolar Forceps,Right Prograsp Forceps,Left Large Needle Driver,Right Large Needle Driver', help='labels of interest')

    parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument')

    args = parser.parse_args()

    return args

def main():
    args = parse_args()
    with open(args.data_config, 'r') as f:
        data_config = yaml.load(f, Loader=yaml.FullLoader)
    with open(args.model_config, 'r') as f:
        model_config = yaml.load(f, Loader=yaml.FullLoader)
    labels_of_interest = args.labels_of_interest.split(',')

    #make folder to save visualizations
    os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True)
    os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True)
    if args.gt_path:
        os.makedirs(os.path.join(args.save_path,"rescaled_gt"),exist_ok=True)

    #load model
    model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device, training_strategy='svdtuning')
    # model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device, training_strategy='lora')
    
    #legacy model support
    if args.pretrained_path:
        sdict = torch.load(args.pretrained_path, map_location=args.device)
        # for key in list(sdict.keys()):
        #     if 'sam_encoder.neck' in key:
        #         if '0' in key:
        #             new_key = key.replace('0','conv1')
        #         if '1' in key:
        #             new_key = key.replace('1','ln1')
        #         if '2' in key:
        #             new_key = key.replace('2','conv2')
        #         if '3' in key:
        #             new_key = key.replace('3','ln2')
        #         sdict[new_key] = sdict[key]
        #         _ = sdict.pop(key)
        #     if 'mask_decoder' in key:
        #         if 'trainable' in key:
        #             _ = sdict.pop(key)   
        
        model.load_state_dict(sdict,strict=True)
    model = model.to(args.device)
    model = model.eval()

    #load data transform
    data_transform = GLAS_Transform(config=data_config)

    #dice
    dices = []
    ious=[]

    #load data
    for i,img_name in enumerate(sorted(os.listdir(args.data_folder))):
        if (('png' not in img_name) and ('jpg' not in img_name) and ('jpeg' not in img_name) and ('bmp' not in img_name)):
            continue
        if 'anno' in img_name:
            continue
        # if i%5!=0:
        #     continue
        img_path = (os.path.join(args.data_folder,img_name))
        if args.gt_path:
            gt_path = (os.path.join(args.data_folder,img_name[:-4]+'_anno.bmp'))

        # print(img_path)
        img = torch.as_tensor(np.array(Image.open(img_path).convert("RGB")))
        img = img.permute(2,0,1)
        C,H,W = img.shape
        #make a dummy mask of shape 1XHXW
        if args.gt_path:
            label = torch.Tensor(np.array(Image.open(gt_path)))
            if len(label.shape)==3:
                label = label[:,:,0]
            label = label.unsqueeze(0)
            mask = (label>0)+0
            # plt.imshow(gold)
            # plt.show()

        else:
            mask = torch.zeros((1,H,W))
        img, mask = data_transform(img, mask, is_train=False, apply_norm=True)
        mask = (mask>=0.5)+0

        #get positive point prompts
        _,y,x = torch.where(mask==1)
        pos_prompts = torch.cat([x.unsqueeze(1),y.unsqueeze(1)],dim=1)

        #get negative point prompts
        _,y_neg,x_neg = torch.where(mask==0)
        neg_prompts = (torch.cat([x_neg.unsqueeze(1),y_neg.unsqueeze(1)],dim=1))

        if len(y)>0:
            pos_point_idx = random.randint(0,y.shape[0]-1)
            neg_point_idx = random.randint(0,y_neg.shape[0]-1)
            # points = (torch.cat([pos_prompts[pos_point_idx].unsqueeze(0), neg_prompts[neg_point_idx].unsqueeze(0)],dim=0).unsqueeze(0).to(args.device), torch.Tensor([1,-1]).unsqueeze(0).to(args.device))
            points = (pos_prompts[pos_point_idx].unsqueeze(0).unsqueeze(0).to(args.device), torch.Tensor([1]).unsqueeze(0).to(args.device))
        
        else:
            neg_point_idx1 = random.randint(0,y_neg.shape[0]-1)
            neg_point_idx2 = random.randint(0,y_neg.shape[0]-1)
            # points = (torch.cat([neg_prompts[neg_point_idx1].unsqueeze(0), neg_prompts[neg_point_idx2].unsqueeze(0)],dim=0).unsqueeze(0).to(args.device), torch.Tensor([-1,-1]).unsqueeze(0).to(args.device))
            points = (neg_prompts[neg_point_idx1].unsqueeze(0).unsqueeze(0).to(args.device), torch.Tensor([-1]).unsqueeze(0).to(args.device))


        #get image embeddings
        img = img.unsqueeze(0).to(args.device)  #1XCXHXW
        img_embeds = model.get_image_embeddings(img)

        # generate masks for all labels of interest
        img_embeds_repeated = img_embeds.repeat(len(labels_of_interest),1,1,1)
        x_text = [t for t in labels_of_interest]
        masks = model.get_masks_for_multiple_labels(img_embeds_repeated, x_text).cpu()
        masks = model.get_masks_with_manual_prompts(img_embeds_repeated, points=points).cpu()


        plt.imshow((masks[0]>=0.5), cmap='gray')
        if len(y)>0:
            plt.scatter(x[pos_point_idx], y[pos_point_idx], c='green')
            # plt.scatter(x_neg[neg_point_idx], y_neg[neg_point_idx], c='red')
        else:
            plt.scatter(x_neg[neg_point_idx1], y_neg[neg_point_idx1], c='red')
            # plt.scatter(x_neg[neg_point_idx2], y_neg[neg_point_idx2], c='red')
        plt.savefig(os.path.join(args.save_path,'rescaled_preds', img_name[:-4]+'.png'))
        plt.close()

        # if args.gt_path:
        #     plt.imshow((mask[0]), cmap='gray')
        #     plt.savefig(os.path.join(args.save_path,'rescaled_gt', img_name))
        #     plt.close()

        # print("dice: ",dice_coef(label, (masks>0.5)+0))
        dices.append(dice_coef(mask, (masks>=0.5)+0))
        ious.append(iou_coef(mask, (masks>=0.5)+0))
        # break
    print(torch.mean(torch.Tensor(dices)))
    print(torch.mean(torch.Tensor(ious)))

if __name__ == '__main__':
    main()