File size: 4,952 Bytes
4a1f918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import yaml
import sys
import copy
import os
sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/SVDSAM/")

from data_utils import *
from model import *
from utils import *

label_names = ['liver', 'tumor']
# visualize_li = [[1,0,0],[0,1,0],[1,0,0], [0,0,1], [0,0,1]]
label_dict = {}
# visualize_dict = {}
for i,ln in enumerate(label_names):
        label_dict[ln] = i
        # visualize_dict[ln] = visualize_li[i]

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--data_folder', default='config_tmp.yml',
                        help='data folder file path')

    parser.add_argument('--data_config', default='config_tmp.yml',
                        help='data config file path')

    parser.add_argument('--model_config', default='model_baseline.yml',
                        help='model config file path')

    parser.add_argument('--pretrained_path', default=None,
                        help='pretrained model path')

    parser.add_argument('--save_path', default='checkpoints/temp.pth',
                        help='pretrained model path')

    parser.add_argument('--gt_path', default='',
                        help='ground truth path')

    parser.add_argument('--device', default='cuda:0', help='device to train on')

    parser.add_argument('--labels_of_interest', default='tumor', help='labels of interest')

    parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument')

    args = parser.parse_args()

    return args

def main():
    args = parse_args()
    with open(args.data_config, 'r') as f:
        data_config = yaml.load(f, Loader=yaml.FullLoader)
    with open(args.model_config, 'r') as f:
        model_config = yaml.load(f, Loader=yaml.FullLoader)
    labels_of_interest = args.labels_of_interest.split(',')
    codes = args.codes.split(',')
    codes = [int(c) for c in codes]

    label_dict = {
            'liver': 1,
            'tumor': 2,
        }

    #change the img size in model config according to data config
    model_config['sam']['img_size'] = data_config['data_transforms']['img_size']
    model_config['sam']['num_classes'] = len(data_config['data']['label_list'])


    #make folder to save visualizations
    os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True)
    os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True)
    if args.gt_path:
        os.makedirs(os.path.join(args.save_path,"rescaled_gt"),exist_ok=True)

    #load model
    model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device, training_strategy='svdtuning')
    #legacy model support
    sdict = torch.load(args.pretrained_path, map_location=args.device)
    # for key in list(sdict.keys()):
    #     if 'sam_encoder.neck' in key:
    #         if '0' in key:
    #             new_key = key.replace('0','conv1')
    #         if '1' in key:
    #             new_key = key.replace('1','ln1')
    #         if '2' in key:
    #             new_key = key.replace('2','conv2')
    #         if '3' in key:
    #             new_key = key.replace('3','ln2')
    #         sdict[new_key] = sdict[key]
    #         _ = sdict.pop(key)
    #     if 'mask_decoder' in key:
    #         if 'trainable' in key:
    #             _ = sdict.pop(key)   
    
    model.load_state_dict(sdict,strict=True)
    model = model.to(args.device)
    model = model.eval()

    data_transform = Slice_Transforms(config=data_config)
    label_text = args.labels_of_interest
    #load data
    for i, file_name in enumerate(sorted(os.listdir(args.data_folder))):
        print(i)
        file_path = os.path.join(args.data_folder, file_name)
        im_nib = nib.load(file_path)

        # for 2d mode
        #image loading and conversion to rgb by replicating channels
        if data_config['data']['volume_channel']==2: #data originally is HXWXC
            im = (torch.Tensor(np.asanyarray(im_nib.dataobj)).permute(2,0,1).unsqueeze(1).repeat(1,3,1,1))
        else: #data originally is CXHXW
            im = (torch.Tensor(np.asanyarray(im_nib.dataobj)).unsqueeze(1).repeat(1,3,1,1))
        num_slices = im.shape[0]
        preds = []
        for i in range(num_slices):
            slice_im = im[i]
            slice_im = data_transform(slice_im)
            slice_im = torch.Tensor(slice_im).to(args.device)
            with torch.set_grad_enabled(False):
                outputs, reg_loss = model(slice_im, [label_text], [i])
                slice_pred = (outputs>=0.5) +0
                preds.append(slice_pred)
        
        # print(len(preds))
        # print(preds[0].shape)
        preds = (torch.cat(preds, dim=0).permute(1,2,0)).cpu().numpy().astype('uint8')
        # print(preds.shape)
        ni_img = nib.Nifti1Image(preds, im_nib.affine)
        nib.save(ni_img, os.path.join(args.save_path,'preds',file_name))


if __name__ == '__main__':
    main()