File size: 7,034 Bytes
4a1f918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import yaml
import sys
import copy
import os
sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/biastuning/")

from data_utils import *
from model import *
from utils import *
from baselines import UNet, UNext, medt_net
from vit_seg_modeling import VisionTransformer
from vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
from axialnet import MedT

label_names = ['Liver', 'Kidney', 'Pancreas', 'Vessels', 'Adrenals', 'Gall Bladder', 'Bones', 'Spleen']
# visualize_li = [[1,0,0],[0,1,0],[1,0,0], [0,0,1], [0,0,1]]
label_dict = {}
# visualize_dict = {}
for i,ln in enumerate(label_names):
        label_dict[ln] = i
        # visualize_dict[ln] = visualize_li[i]

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--data_folder', default='config_tmp.yml',
                        help='data folder file path')

    parser.add_argument('--data_config', default='config_tmp.yml',
                        help='data config file path')

    parser.add_argument('--model_config', default='model_baseline.yml',
                        help='model config file path')

    parser.add_argument('--pretrained_path', default=None,
                        help='pretrained model path')

    parser.add_argument('--save_path', default='checkpoints/temp.pth',
                        help='pretrained model path')

    parser.add_argument('--gt_path', default='',
                        help='ground truth path')

    parser.add_argument('--device', default='cuda:0', help='device to train on')

    parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument')

    args = parser.parse_args()

    return args

def main():
    args = parse_args()
    with open(args.data_config, 'r') as f:
        data_config = yaml.load(f, Loader=yaml.FullLoader)
    with open(args.model_config, 'r') as f:
        model_config = yaml.load(f, Loader=yaml.FullLoader)
    codes = args.codes.split(',')
    codes = [int(c) for c in codes]

    label_dict = {
            'Liver': [[100,0,100]],
            'Kidney': [[255,255,0]],
            'Pancreas': [[0,0,255]],
            'Vessels': [[255,0,0]],
            'Adrenals': [[0,255,255]],
            'Gall Bladder': [[0,255,0]],
            'Bones': [[255,255,255]],
            'Spleen': [[255,0,255]]
        }


    #make folder to save visualizations
    os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True)
    os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True)
    if args.gt_path:
        os.makedirs(os.path.join(args.save_path,"rescaled_gt"),exist_ok=True)


    #load model
    #change the img size in model config according to data config
    in_channels = model_config['in_channels']
    out_channels = model_config['num_classes']
    img_size = model_config['img_size']
    if model_config['arch']=='Prompt Adapted SAM':
        model = Prompt_Adapted_SAM(model_config, label_dict, args.device, training_strategy='biastuning')
    elif model_config['arch']=='UNet':
        model = UNet(in_channels=in_channels, out_channels=out_channels)
    elif model_config['arch']=='UNext':
        model = UNext(num_classes=out_channels, input_channels=in_channels, img_size=img_size)
    elif model_config['arch']=='MedT':
        #TODO
        model = MedT(img_size=img_size, num_classes=out_channels)
    elif model_config['arch']=='TransUNet':
        config_vit = CONFIGS_ViT_seg['R50-ViT-B_16']
        config_vit.n_classes = out_channels
        config_vit.n_skip = 3
        # if args.vit_name.find('R50') != -1:
        #     config_vit.patches.grid = (int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size))
        model = VisionTransformer(config_vit, img_size=img_size, num_classes=config_vit.n_classes)

    model.load_state_dict(torch.load(args.pretrained_path, map_location=args.device))
    model = model.to(args.device)
    model = model.eval()

    #load data transform
    data_transform = Ultrasound_Transform(config=data_config)

    #dice
    dices = []
    ious=[]

    #load data
    for i,img_name in enumerate(sorted(os.listdir(args.data_folder))):
        # if i%5!=0:
        #     continue
        img_path = (os.path.join(args.data_folder,img_name))
        if args.gt_path:
            gt_path = (os.path.join(args.gt_path,img_name))
            if not os.path.exists(gt_path):
                gt_path = (os.path.join(args.gt_path,img_name[:-4]+'.png'))
                if not os.path.exists(gt_path):
                    continue

        # print(img_path)
        img = torch.as_tensor(np.array(Image.open(img_path).convert("RGB")))
        img = img.permute(2,0,1)
        C,H,W = img.shape
        #make a dummy mask of shape 1XHXW
        label = np.array(Image.open(gt_path).convert("RGB"))

        if args.gt_path:

            mask = np.zeros((len(label_dict),img.shape[1], img.shape[2]))
            for i,c in enumerate(list(label_dict.keys())):
                temp = np.zeros(label.shape).astype('uint8')[:,:,0]
                selected_color_list = label_dict[c]
                for c in selected_color_list:
                    temp = temp | (np.all(np.where(label==c,1,0),axis=2))
                mask[i,:,:] = temp
            mask = torch.Tensor(mask)

        else:
            mask = torch.zeros((len(label_dict),H,W))
        img, mask = data_transform(img, mask, is_train=False, apply_norm=True)
        mask = (mask>=0.5)+0

        img = img.unsqueeze(0).to(args.device)  #1XCXHXW
        masks = model(img,'')
        # print("masks shape: ",masks.shape)

        argmax_masks = torch.argmax(masks, dim=1).cpu().numpy()
        # print("argmax masks shape: ",argmax_masks.shape)

        classwise_dices = []
        classwise_ious = []
        for j,c1 in enumerate(label_dict):
            res = np.where(argmax_masks==j,1,0)
            # print("res shape: ",res.shape)
            plt.imshow(res[0], cmap='gray')
            save_dir = os.path.join(args.save_path, c1, 'rescaled_preds')
            os.makedirs(save_dir, exist_ok=True)
            plt.savefig(os.path.join(args.save_path, c1, 'rescaled_preds', img_name))
            plt.close()

            if args.gt_path:
                plt.imshow((mask[j]), cmap='gray')
                save_dir = os.path.join(args.save_path, c1, 'rescaled_gt')
                os.makedirs(save_dir, exist_ok=True)
                plt.savefig(os.path.join(args.save_path, c1, 'rescaled_gt', img_name))
                plt.close()

                classwise_dices.append(dice_coef(mask[j], torch.Tensor(res[0])))
                classwise_ious.append(iou_coef(mask[j], torch.Tensor(res[0])))

        # break
        dices.append(classwise_dices)
        ious.append(classwise_ious)
        # print("classwise_dices: ", classwise_dices)
        # print("classwise ious: ", classwise_ious)

    print(torch.mean(torch.Tensor(dices),dim=0))
    print(torch.mean(torch.Tensor(ious),dim=0))

if __name__ == '__main__':
    main()