File size: 7,283 Bytes
4a1f918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from typing import Type, Tuple, Optional


"""
SALT with LoRA only
"""

class SALTLinear(nn.Linear):
    """
    A linear layer that combines truncated SVD decomposition with LoRA-style adaptation.
    Only keeps top r singular values and vectors, then adds LoRA adaptation.
    """
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        rank: int,  # truncation rank for SVD
        r_lora: int = 8,  # LoRA rank
        bias: bool = True,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
        seed: int = 42
    ) -> None:
        super().__init__(in_features, out_features, bias, device, dtype)
        torch.manual_seed(seed)
        
        # Initialize parameters for SVD
        self.weight.requires_grad = False
        self.done_svd = False
        self.U, self.S, self.Vt = self._initialize_svd()
        
        max_possible_rank = min(self.U.shape[1], self.S.shape[0], self.Vt.shape[0])
        print("\nThe max possible rank is", max_possible_rank)

        # Truncation rank for SVD
        self.rank = rank
        
        # Initialize LoRA matrices
        self.X = nn.Parameter(torch.randn(max_possible_rank, r_lora) * 0.01)
        self.Y = nn.Parameter(torch.randn(r_lora, max_possible_rank) * 0.01)

        self.reset_parameters()

    def _initialize_svd(self):
        """Initializes SVD decomposition on the weight matrix."""
        return torch.linalg.svd(self.weight, full_matrices=False)

    def perform_svd(self) -> None:
        """Updates truncated SVD decomposition on the weight matrix."""
        self.U, self.S, self.Vt = self._initialize_svd()
        self.done_svd = True

    def get_modified_singular_values(self) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Computes modified singular values using LoRA adaptation.
        Returns:
            Tuple containing:
                - Modified singular values tensor
                - LoRA adaptation term
        """
         # Compute the LoRA adaptation term
        loRA_term = self.X @ self.Y

        # Create a mask that matches the shape of loRA_term
        mask = torch.ones_like(loRA_term, device=self.X.device)
        # Example: Set the first `rank` rows of the mask to 0
        mask[:self.rank, :] = 0  # Adjust as needed

        # Apply mask to LoRA term
        masked_loRA_term = loRA_term * mask

        # Compute the modified singular values
        new_s = torch.diag(self.S) + masked_loRA_term
        return new_s, masked_loRA_term

    def forward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Forward pass with LoRA-modified truncated singular values.
        
        Args:
            input: Input tensor
            
        Returns:
            Tuple containing:
                - Output tensor after linear transformation
                - Regularization loss
        """
        if not self.done_svd:
            self.perform_svd()

        new_s, LoRA_term = self.get_modified_singular_values()
        s_new = F.relu(new_s.to(input.device))

        # Reconstruct weight matrix using truncated components
        weight_updated = self.U @ s_new @ self.Vt
        
        # Compute regularization loss
        reg_loss = torch.norm(LoRA_term)

        return F.linear(input, weight_updated, self.bias), reg_loss


class SALTConv2d(nn.Conv2d):
    """
    A 2D convolutional layer that combines truncated SVD decomposition with LoRA-style adaptation.
    The weight matrix is reshaped before applying truncated SVD and LoRA modifications.
    """
    def __init__(
        self, 
        in_channels: int, 
        out_channels: int,
        kernel_size: int,
        rank: int,  # truncation rank for SVD
        r_lora: int = 8,  # LoRA rank
        seed: int = 42,
        **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        torch.manual_seed(seed)
        
        self.done_svd = False
        self.weight.requires_grad = False

        # Reshape weight and perform initial truncated SVD
        weight_reshaped = rearrange(self.weight, 'co cin h w -> co (cin h w)')
        self.U, self.S, self.Vt = self._initialize_svd(weight_reshaped)

        max_possible_rank = min(self.U.shape[1], self.S.shape[0], self.Vt.shape[0])
        print("\nThe max possible rank is", max_possible_rank)

        self.rank = rank
        
        # Initialize LoRA matrices
        self.X = nn.Parameter(torch.randn(max_possible_rank, r_lora) * 0.01)
        self.Y = nn.Parameter(torch.randn(r_lora, max_possible_rank) * 0.01)

        self.reset_parameters()

    def _initialize_svd(self, weight_reshaped):
        """Initializes SVD decomposition on the reshaped weight matrix."""
        return torch.linalg.svd(weight_reshaped, full_matrices=False)

    def perform_svd(self) -> None:
        """Updates truncated SVD decomposition on the reshaped weight matrix."""
        weight_reshaped = rearrange(self.weight, 'co cin h w -> co (cin h w)')
        self.U, self.S, self.Vt = self._initialize_svd(weight_reshaped)
        self.done_svd = True

    def get_modified_singular_values(self) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Computes modified singular values using LoRA adaptation.
        Returns:
            Tuple containing:
                - Modified singular values tensor
                - LoRA adaptation term
        """
         # Compute the LoRA adaptation term
        loRA_term = self.X @ self.Y

        # Create a mask that matches the shape of loRA_term
        mask = torch.ones_like(loRA_term, device=self.X.device)
        # Example: Set the first `rank` rows of the mask to 0
        mask[:self.rank, :] = 0  # Adjust as needed

        # Apply mask to LoRA term
        masked_loRA_term = loRA_term * mask

        # Compute the modified singular values
        new_s = torch.diag(self.S) + masked_loRA_term
        return new_s, masked_loRA_term

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Forward pass with LoRA-modified truncated singular values.
        
        Args:
            x: Input tensor
            
        Returns:
            Tuple containing:
                - Output tensor after convolution
                - Regularization loss
        """
        if not self.done_svd:
            self.perform_svd()

        new_s, LoRA_term = self.get_modified_singular_values()
        s_new = F.relu(new_s.to(x.device))

        # Reconstruct weight matrix using truncated components
        weight_updated = self.U @ s_new @ self.Vt
        
        # Reshape weight back to conv2d format
        weight_updated = rearrange(
            weight_updated, 
            'co (cin h w) -> co cin h w', 
            cin=self.weight.size(1), 
            h=self.weight.size(2), 
            w=self.weight.size(3)
        )
        
        # Compute regularization loss
        reg_loss = torch.norm(LoRA_term)

        return F.conv2d(
            x, weight_updated, self.bias, 
            self.stride, self.padding, 
            self.dilation, self.groups
        ), reg_loss