File size: 7,386 Bytes
4a1f918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from typing import Type


"""
This Version of SALT uses:
    - W = U (\Sigma . A + B) + XY
    - we uses normal LoRA
"""

class SALTLinear(nn.Linear):
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        rank: int,  # rank for truncated SVD
        r_lora: int,  # rank for LoRA
        rsLora=False,
        alpha=1,
        bias: bool = True, 
        device=None, 
        dtype=None
    ) -> None:
        super().__init__(in_features, out_features, bias, device, dtype)
        
        # Perform full SVD initially
        self.U, self.S, self.Vt = torch.linalg.svd(self.weight, full_matrices=False)
        self.weight.requires_grad = False
        self.done_svd = False
        max_possible_rank = min(self.U.shape[1], self.S.shape[0], self.Vt.shape[0])
        print("\nThe max possible rank is " , max_possible_rank)
        # Initialize A and B for singular value transformation
        self.trainable_A = nn.Parameter(torch.ones(rank))
        self.trainable_B = nn.Parameter(torch.zeros(rank))
        self.A_frozen = torch.ones(max_possible_rank-self.trainable_A.shape[0])
        self.B_frozen = torch.ones(max_possible_rank-self.trainable_B.shape[0])
        
        # Initialize LoRA parameters
        self.trainable_lora_X = nn.Parameter(torch.randn(out_features, r_lora) * 0.01)
        self.trainable_lora_Y = nn.Parameter(torch.randn(r_lora, in_features) * 0.01)
        
        self.reset_parameters()

    def reset_parameters(self) -> None:
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'trainable_A'):
            nn.init.ones_(self.trainable_A)
        if hasattr(self, 'trainable_B'):
            nn.init.zeros_(self.trainable_B)
        if hasattr(self, 'trainable_lora_X'):
            nn.init.normal_(self.trainable_lora_X, std=0.01)
        if hasattr(self, 'trainable_lora_Y'):
            nn.init.normal_(self.trainable_lora_Y, std=0.01)
    # No clue why they are using this
    def perform_svd(self):
        self.U, self.S, self.Vt = torch.linalg.svd(self.weight, full_matrices=False)
        self.done_svd = True
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if not self.done_svd:
            self.perform_svd()
        # Transform singular values: A路危_r + B
        # We first cat the trainable + the frozen parameters
        A_total = torch.cat([self.trainable_A,self.A_frozen.to(input.device)])
        B_total = torch.cat([self.trainable_B,self.B_frozen.to(input.device)])
        transformed_S = A_total * self.S + B_total
        
        # Compute truncated SVD part: U_r(A路危_r + B)V_r^T
        weight_svd = self.U @ torch.diag(F.relu(transformed_S)) @ self.Vt
        
        # Add LoRA part: X路Y
        weight_lora = self.trainable_lora_X @ self.trainable_lora_Y
        
        # Combine both parts
        weight_updated = weight_svd + weight_lora
        
        # Compute regularization loss
        reg_loss = (
            torch.norm(1 - self.trainable_A) +  # A should be close to 1
            torch.norm(self.trainable_B) +      # B should be close to 0
            torch.norm(self.trainable_lora_X) * torch.norm(self.trainable_lora_Y)  # LoRA regularization
        )
        
        return F.linear(input, weight_updated, self.bias), reg_loss

class SALTConv2d(nn.Conv2d):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        rank: int,  # rank for truncated SVD
        r_lora: int,  # rank for LoRA
        rsLora=False,
        alpha=1,
        **kwargs
    ):
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        assert isinstance(kernel_size, int)
        
        # Reshape weight and perform SVD
        weight_reshaped = rearrange(self.weight, 'co cin h w -> co (cin h w)')
        self.U, self.S, self.Vt = torch.linalg.svd(weight_reshaped, full_matrices=False)
        self.done_svd = False
        # Ensure rank is not larger than the minimum dimension
        max_possible_rank = min(self.U.shape[1], self.S.shape[0], self.Vt.shape[0])
        print("\nThe max possible rank is " , max_possible_rank)
        self.actual_rank = min(rank, max_possible_rank)
        
        # Initialize A and B for singular value transformation with correct size
        self.trainable_A = nn.Parameter(torch.ones(self.actual_rank))
        self.trainable_B = nn.Parameter(torch.zeros(self.actual_rank))
        self.A_frozen = torch.ones(max_possible_rank-self.actual_rank)
        self.B_frozen = torch.ones(max_possible_rank-self.actual_rank)
        # Initialize LoRA parameters
        total_kernel_size = in_channels * kernel_size * kernel_size
        self.trainable_lora_X = nn.Parameter(torch.randn(out_channels, r_lora) * 0.01)
        self.trainable_lora_Y = nn.Parameter(torch.randn(r_lora, total_kernel_size) * 0.01)
        
        # Freeze original weights
        self.weight.requires_grad = False
        
        # Save shapes for reshaping
        self.weight_shape = self.weight.shape
        self.reset_parameters()
    # No clue why they are using this
    def perform_svd(self):
        # shape
        weight_reshaped = rearrange(self.weight, 'co cin h w -> co (cin h w)')
        self.U, self.S, self.Vt = torch.linalg.svd(weight_reshaped, full_matrices=False)
        self.done_svd = True        

    def reset_parameters(self) -> None:
        nn.Conv2d.reset_parameters(self)
        if hasattr(self, 'trainable_A'):
            nn.init.ones_(self.trainable_A)
        if hasattr(self, 'trainable_B'):
            nn.init.zeros_(self.trainable_B)
        if hasattr(self, 'trainable_lora_X'):
            nn.init.normal_(self.trainable_lora_X, std=0.01)
        if hasattr(self, 'trainable_lora_Y'):
            nn.init.normal_(self.trainable_lora_Y, std=0.01)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if not self.done_svd:
            self.perform_svd()

        A_total = torch.cat([self.trainable_A,self.A_frozen.to(x.device)])
        B_total = torch.cat([self.trainable_B,self.B_frozen.to(x.device)])
        transformed_S = A_total * self.S + B_total
        
        # Compute truncated SVD part: U_r(A路危_r + B)V_r^T
        weight_svd = self.U @ torch.diag(F.relu(transformed_S)) @ self.Vt
        
        # Add LoRA part: X路Y
        weight_lora = self.trainable_lora_X @ self.trainable_lora_Y
        
        # Combine both parts
        weight_updated = weight_svd + weight_lora
        
        # Reshape back to conv2d weight shape
        weight_updated = rearrange(
            weight_updated, 
            'co (cin h w) -> co cin h w', 
            cin=self.weight_shape[1], 
            h=self.weight_shape[2], 
            w=self.weight_shape[3]
        )
        
        # Compute regularization loss
        reg_loss = (
            torch.norm(1 - self.trainable_A) +  # A should be close to 1
            torch.norm(self.trainable_B) +      # B should be close to 0
            torch.norm(self.trainable_lora_X) * torch.norm(self.trainable_lora_Y)  # LoRA regularization
        )
        
        return F.conv2d(
            x, weight_updated, self.bias, 
            self.stride, self.padding, 
            self.dilation, self.groups
        ), reg_loss