|
import pdb |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from utils import * |
|
import pdb |
|
import matplotlib.pyplot as plt |
|
|
|
import random |
|
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class AxialAttention(nn.Module): |
|
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56, |
|
stride=1, bias=False, width=False): |
|
assert (in_planes % groups == 0) and (out_planes % groups == 0) |
|
super(AxialAttention, self).__init__() |
|
self.in_planes = in_planes |
|
self.out_planes = out_planes |
|
self.groups = groups |
|
self.group_planes = out_planes // groups |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.bias = bias |
|
self.width = width |
|
|
|
|
|
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1, |
|
padding=0, bias=False) |
|
self.bn_qkv = nn.BatchNorm1d(out_planes * 2) |
|
self.bn_similarity = nn.BatchNorm2d(groups * 3) |
|
|
|
self.bn_output = nn.BatchNorm1d(out_planes * 2) |
|
|
|
|
|
self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True) |
|
query_index = torch.arange(kernel_size).unsqueeze(0) |
|
key_index = torch.arange(kernel_size).unsqueeze(1) |
|
relative_index = key_index - query_index + kernel_size - 1 |
|
self.register_buffer('flatten_index', relative_index.view(-1)) |
|
if stride > 1: |
|
self.pooling = nn.AvgPool2d(stride, stride=stride) |
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x): |
|
|
|
if self.width: |
|
x = x.permute(0, 2, 1, 3) |
|
else: |
|
x = x.permute(0, 3, 1, 2) |
|
N, W, C, H = x.shape |
|
x = x.contiguous().view(N * W, C, H) |
|
|
|
|
|
qkv = self.bn_qkv(self.qkv_transform(x)) |
|
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2) |
|
|
|
|
|
all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size) |
|
q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0) |
|
|
|
qr = torch.einsum('bgci,cij->bgij', q, q_embedding) |
|
kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3) |
|
|
|
qk = torch.einsum('bgci, bgcj->bgij', q, k) |
|
|
|
stacked_similarity = torch.cat([qk, qr, kr], dim=1) |
|
stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1) |
|
|
|
|
|
similarity = F.softmax(stacked_similarity, dim=3) |
|
sv = torch.einsum('bgij,bgcj->bgci', similarity, v) |
|
sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding) |
|
stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H) |
|
output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2) |
|
|
|
if self.width: |
|
output = output.permute(0, 2, 1, 3) |
|
else: |
|
output = output.permute(0, 2, 3, 1) |
|
|
|
if self.stride > 1: |
|
output = self.pooling(output) |
|
|
|
return output |
|
|
|
def reset_parameters(self): |
|
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes)) |
|
|
|
nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes)) |
|
|
|
class AxialAttention_dynamic(nn.Module): |
|
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56, |
|
stride=1, bias=False, width=False): |
|
assert (in_planes % groups == 0) and (out_planes % groups == 0) |
|
super(AxialAttention_dynamic, self).__init__() |
|
self.in_planes = in_planes |
|
self.out_planes = out_planes |
|
self.groups = groups |
|
self.group_planes = out_planes // groups |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.bias = bias |
|
self.width = width |
|
|
|
|
|
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1, |
|
padding=0, bias=False) |
|
self.bn_qkv = nn.BatchNorm1d(out_planes * 2) |
|
self.bn_similarity = nn.BatchNorm2d(groups * 3) |
|
self.bn_output = nn.BatchNorm1d(out_planes * 2) |
|
|
|
|
|
|
|
|
|
|
|
self.f_qr = nn.Parameter(torch.tensor(0.1), requires_grad=False) |
|
self.f_kr = nn.Parameter(torch.tensor(0.1), requires_grad=False) |
|
self.f_sve = nn.Parameter(torch.tensor(0.1), requires_grad=False) |
|
self.f_sv = nn.Parameter(torch.tensor(1.0), requires_grad=False) |
|
|
|
|
|
|
|
self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True) |
|
query_index = torch.arange(kernel_size).unsqueeze(0) |
|
key_index = torch.arange(kernel_size).unsqueeze(1) |
|
relative_index = key_index - query_index + kernel_size - 1 |
|
self.register_buffer('flatten_index', relative_index.view(-1)) |
|
if stride > 1: |
|
self.pooling = nn.AvgPool2d(stride, stride=stride) |
|
|
|
self.reset_parameters() |
|
|
|
|
|
def forward(self, x): |
|
if self.width: |
|
x = x.permute(0, 2, 1, 3) |
|
else: |
|
x = x.permute(0, 3, 1, 2) |
|
N, W, C, H = x.shape |
|
x = x.contiguous().view(N * W, C, H) |
|
|
|
|
|
qkv = self.bn_qkv(self.qkv_transform(x)) |
|
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2) |
|
|
|
|
|
all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size) |
|
q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0) |
|
qr = torch.einsum('bgci,cij->bgij', q, q_embedding) |
|
kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3) |
|
qk = torch.einsum('bgci, bgcj->bgij', q, k) |
|
|
|
|
|
|
|
qr = torch.mul(qr, self.f_qr) |
|
kr = torch.mul(kr, self.f_kr) |
|
|
|
stacked_similarity = torch.cat([qk, qr, kr], dim=1) |
|
stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1) |
|
|
|
|
|
similarity = F.softmax(stacked_similarity, dim=3) |
|
sv = torch.einsum('bgij,bgcj->bgci', similarity, v) |
|
sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding) |
|
|
|
|
|
sv = torch.mul(sv, self.f_sv) |
|
sve = torch.mul(sve, self.f_sve) |
|
|
|
stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H) |
|
output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2) |
|
|
|
if self.width: |
|
output = output.permute(0, 2, 1, 3) |
|
else: |
|
output = output.permute(0, 2, 3, 1) |
|
|
|
if self.stride > 1: |
|
output = self.pooling(output) |
|
|
|
return output |
|
def reset_parameters(self): |
|
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes)) |
|
|
|
nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes)) |
|
|
|
class AxialAttention_wopos(nn.Module): |
|
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56, |
|
stride=1, bias=False, width=False): |
|
assert (in_planes % groups == 0) and (out_planes % groups == 0) |
|
super(AxialAttention_wopos, self).__init__() |
|
self.in_planes = in_planes |
|
self.out_planes = out_planes |
|
self.groups = groups |
|
self.group_planes = out_planes // groups |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.bias = bias |
|
self.width = width |
|
|
|
|
|
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1, |
|
padding=0, bias=False) |
|
self.bn_qkv = nn.BatchNorm1d(out_planes * 2) |
|
self.bn_similarity = nn.BatchNorm2d(groups ) |
|
|
|
self.bn_output = nn.BatchNorm1d(out_planes * 1) |
|
|
|
if stride > 1: |
|
self.pooling = nn.AvgPool2d(stride, stride=stride) |
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x): |
|
if self.width: |
|
x = x.permute(0, 2, 1, 3) |
|
else: |
|
x = x.permute(0, 3, 1, 2) |
|
N, W, C, H = x.shape |
|
x = x.contiguous().view(N * W, C, H) |
|
|
|
|
|
qkv = self.bn_qkv(self.qkv_transform(x)) |
|
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2) |
|
|
|
qk = torch.einsum('bgci, bgcj->bgij', q, k) |
|
|
|
stacked_similarity = self.bn_similarity(qk).reshape(N * W, 1, self.groups, H, H).sum(dim=1).contiguous() |
|
|
|
similarity = F.softmax(stacked_similarity, dim=3) |
|
sv = torch.einsum('bgij,bgcj->bgci', similarity, v) |
|
|
|
sv = sv.reshape(N*W,self.out_planes * 1, H).contiguous() |
|
output = self.bn_output(sv).reshape(N, W, self.out_planes, 1, H).sum(dim=-2).contiguous() |
|
|
|
|
|
if self.width: |
|
output = output.permute(0, 2, 1, 3) |
|
else: |
|
output = output.permute(0, 2, 3, 1) |
|
|
|
if self.stride > 1: |
|
output = self.pooling(output) |
|
|
|
return output |
|
|
|
def reset_parameters(self): |
|
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes)) |
|
|
|
|
|
|
|
|
|
|
|
class AxialBlock(nn.Module): |
|
expansion = 2 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None, kernel_size=56): |
|
super(AxialBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.)) |
|
|
|
self.conv_down = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.hight_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size) |
|
self.width_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True) |
|
self.conv_up = conv1x1(width, planes * self.expansion) |
|
self.bn2 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv_down(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.hight_block(out) |
|
out = self.width_block(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv_up(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class AxialBlock_dynamic(nn.Module): |
|
expansion = 2 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None, kernel_size=56): |
|
super(AxialBlock_dynamic, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.)) |
|
|
|
self.conv_down = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.hight_block = AxialAttention_dynamic(width, width, groups=groups, kernel_size=kernel_size) |
|
self.width_block = AxialAttention_dynamic(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True) |
|
self.conv_up = conv1x1(width, planes * self.expansion) |
|
self.bn2 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv_down(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.hight_block(out) |
|
out = self.width_block(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv_up(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class AxialBlock_wopos(nn.Module): |
|
expansion = 2 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None, kernel_size=56): |
|
super(AxialBlock_wopos, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
|
|
width = int(planes * (base_width / 64.)) |
|
|
|
self.conv_down = conv1x1(inplanes, width) |
|
self.conv1 = nn.Conv2d(width, width, kernel_size = 1) |
|
self.bn1 = norm_layer(width) |
|
self.hight_block = AxialAttention_wopos(width, width, groups=groups, kernel_size=kernel_size) |
|
self.width_block = AxialAttention_wopos(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True) |
|
self.conv_up = conv1x1(width, planes * self.expansion) |
|
self.bn2 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
|
|
|
|
out = self.conv_down(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.hight_block(out) |
|
out = self.width_block(out) |
|
|
|
out = self.relu(out) |
|
|
|
out = self.conv_up(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class ResAxialAttentionUNet(nn.Module): |
|
|
|
def __init__(self, block, layers, num_classes=2, zero_init_residual=True, |
|
groups=8, width_per_group=64, replace_stride_with_dilation=None, |
|
norm_layer=None, s=0.125, img_size = 128,imgchan = 3): |
|
super(ResAxialAttentionUNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = int(64 * s) |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError("replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.bn2 = norm_layer(128) |
|
self.bn3 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2)) |
|
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2), |
|
dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, int(512 * s), layers[2], stride=2, kernel_size=(img_size//4), |
|
dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, int(1024 * s), layers[3], stride=2, kernel_size=(img_size//8), |
|
dilate=replace_stride_with_dilation[2]) |
|
|
|
|
|
self.decoder1 = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1) |
|
self.decoder2 = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder3 = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1) |
|
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0) |
|
self.soft = nn.Softmax(dim=1) |
|
|
|
|
|
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups, |
|
base_width=self.base_width, dilation=previous_dilation, |
|
norm_layer=norm_layer, kernel_size=kernel_size)) |
|
self.inplanes = planes * block.expansion |
|
if stride != 1: |
|
kernel_size = kernel_size // 2 |
|
|
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=self.groups, |
|
base_width=self.base_width, dilation=self.dilation, |
|
norm_layer=norm_layer, kernel_size=kernel_size)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x): |
|
|
|
|
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
x = self.relu(x) |
|
|
|
x1 = self.layer1(x) |
|
|
|
x2 = self.layer2(x1) |
|
|
|
x3 = self.layer3(x2) |
|
|
|
x4 = self.layer4(x3) |
|
|
|
x = F.relu(F.interpolate(self.decoder1(x4), scale_factor=(2,2), mode ='bilinear')) |
|
x = torch.add(x, x4) |
|
x = F.relu(F.interpolate(self.decoder2(x) , scale_factor=(2,2), mode ='bilinear')) |
|
x = torch.add(x, x3) |
|
x = F.relu(F.interpolate(self.decoder3(x) , scale_factor=(2,2), mode ='bilinear')) |
|
x = torch.add(x, x2) |
|
x = F.relu(F.interpolate(self.decoder4(x) , scale_factor=(2,2), mode ='bilinear')) |
|
x = torch.add(x, x1) |
|
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear')) |
|
x = self.adjust(F.relu(x)) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
return self._forward_impl(x) |
|
|
|
class medt_net(nn.Module): |
|
|
|
def __init__(self, block, block_2, layers, num_classes=2, zero_init_residual=True, |
|
groups=8, width_per_group=64, replace_stride_with_dilation=None, |
|
norm_layer=None, s=0.125, img_size = 128,imgchan = 3): |
|
super(medt_net, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = int(64 * s) |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError("replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.bn2 = norm_layer(128) |
|
self.bn3 = norm_layer(self.inplanes) |
|
|
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2)) |
|
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2), |
|
dilate=replace_stride_with_dilation[0]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1) |
|
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0) |
|
self.soft = nn.Softmax(dim=1) |
|
|
|
|
|
self.conv1_p = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.conv2_p = nn.Conv2d(self.inplanes,128, kernel_size=3, stride=1, padding=1, |
|
bias=False) |
|
self.conv3_p = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, |
|
bias=False) |
|
|
|
self.bn1_p = norm_layer(self.inplanes) |
|
self.bn2_p = norm_layer(128) |
|
self.bn3_p = norm_layer(self.inplanes) |
|
|
|
self.relu_p = nn.ReLU(inplace=True) |
|
|
|
img_size_p = img_size // 4 |
|
|
|
self.layer1_p = self._make_layer(block_2, int(128 * s), layers[0], kernel_size= (img_size_p//2)) |
|
self.layer2_p = self._make_layer(block_2, int(256 * s), layers[1], stride=2, kernel_size=(img_size_p//2), |
|
dilate=replace_stride_with_dilation[0]) |
|
self.layer3_p = self._make_layer(block_2, int(512 * s), layers[2], stride=2, kernel_size=(img_size_p//4), |
|
dilate=replace_stride_with_dilation[1]) |
|
self.layer4_p = self._make_layer(block_2, int(1024 * s), layers[3], stride=2, kernel_size=(img_size_p//8), |
|
dilate=replace_stride_with_dilation[2]) |
|
|
|
|
|
self.decoder1_p = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1) |
|
self.decoder2_p = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder3_p = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder4_p = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1) |
|
self.decoder5_p = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1) |
|
|
|
self.decoderf = nn.Conv2d(int(128*s) , int(128*s) , kernel_size=3, stride=1, padding=1) |
|
self.adjust_p = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0) |
|
self.soft_p = nn.Softmax(dim=1) |
|
|
|
|
|
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups, |
|
base_width=self.base_width, dilation=previous_dilation, |
|
norm_layer=norm_layer, kernel_size=kernel_size)) |
|
self.inplanes = planes * block.expansion |
|
if stride != 1: |
|
kernel_size = kernel_size // 2 |
|
|
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=self.groups, |
|
base_width=self.base_width, dilation=self.dilation, |
|
norm_layer=norm_layer, kernel_size=kernel_size)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x): |
|
|
|
xin = x.clone() |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
x = self.conv3(x) |
|
x = self.bn3(x) |
|
|
|
x = self.relu(x) |
|
|
|
|
|
|
|
x1 = self.layer1(x) |
|
|
|
x2 = self.layer2(x1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = F.relu(F.interpolate(self.decoder4(x2) , scale_factor=(2,2), mode ='bilinear')) |
|
x = torch.add(x, x1) |
|
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear')) |
|
|
|
|
|
|
|
|
|
|
|
x_loc = x.clone() |
|
|
|
|
|
for i in range(0,4): |
|
for j in range(0,4): |
|
|
|
x_p = xin[:,:,32*i:32*(i+1),32*j:32*(j+1)] |
|
|
|
x_p = self.conv1_p(x_p) |
|
x_p = self.bn1_p(x_p) |
|
|
|
x_p = self.relu(x_p) |
|
|
|
x_p = self.conv2_p(x_p) |
|
x_p = self.bn2_p(x_p) |
|
|
|
x_p = self.relu(x_p) |
|
x_p = self.conv3_p(x_p) |
|
x_p = self.bn3_p(x_p) |
|
|
|
x_p = self.relu(x_p) |
|
|
|
|
|
|
|
x1_p = self.layer1_p(x_p) |
|
|
|
x2_p = self.layer2_p(x1_p) |
|
|
|
x3_p = self.layer3_p(x2_p) |
|
|
|
x4_p = self.layer4_p(x3_p) |
|
|
|
x_p = F.relu(F.interpolate(self.decoder1_p(x4_p), scale_factor=(2,2), mode ='bilinear')) |
|
x_p = torch.add(x_p, x4_p) |
|
x_p = F.relu(F.interpolate(self.decoder2_p(x_p) , scale_factor=(2,2), mode ='bilinear')) |
|
x_p = torch.add(x_p, x3_p) |
|
x_p = F.relu(F.interpolate(self.decoder3_p(x_p) , scale_factor=(2,2), mode ='bilinear')) |
|
x_p = torch.add(x_p, x2_p) |
|
x_p = F.relu(F.interpolate(self.decoder4_p(x_p) , scale_factor=(2,2), mode ='bilinear')) |
|
x_p = torch.add(x_p, x1_p) |
|
x_p = F.relu(F.interpolate(self.decoder5_p(x_p) , scale_factor=(2,2), mode ='bilinear')) |
|
|
|
x_loc[:,:,32*i:32*(i+1),32*j:32*(j+1)] = x_p |
|
|
|
x = torch.add(x,x_loc) |
|
x = F.relu(self.decoderf(x)) |
|
|
|
x = self.adjust(F.relu(x)) |
|
|
|
|
|
return x |
|
|
|
def forward(self, x, text_dummy): |
|
return self.soft(self._forward_impl(x)),0 |
|
|
|
|
|
def axialunet(pretrained=False, **kwargs): |
|
model = ResAxialAttentionUNet(AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs) |
|
return model |
|
|
|
def gated(pretrained=False, **kwargs): |
|
model = ResAxialAttentionUNet(AxialBlock_dynamic, [1, 2, 4, 1], s= 0.125, **kwargs) |
|
return model |
|
|
|
def MedT(pretrained=False, **kwargs): |
|
model = medt_net(AxialBlock_dynamic,AxialBlock_wopos, [1, 2, 4, 1], s= 0.125, **kwargs) |
|
return model |
|
|
|
def logo(pretrained=False, **kwargs): |
|
model = medt_net(AxialBlock,AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs) |
|
return model |
|
|
|
|