SALT-SAM / AllinonSAM /axialnet.py
pythn's picture
Upload with huggingface_hub
4a1f918 verified
import pdb
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import *
import pdb
import matplotlib.pyplot as plt
import random
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class AxialAttention(nn.Module):
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
stride=1, bias=False, width=False):
assert (in_planes % groups == 0) and (out_planes % groups == 0)
super(AxialAttention, self).__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.groups = groups
self.group_planes = out_planes // groups
self.kernel_size = kernel_size
self.stride = stride
self.bias = bias
self.width = width
# Multi-head self attention
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
self.bn_similarity = nn.BatchNorm2d(groups * 3)
self.bn_output = nn.BatchNorm1d(out_planes * 2)
# Position embedding
self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True)
query_index = torch.arange(kernel_size).unsqueeze(0)
key_index = torch.arange(kernel_size).unsqueeze(1)
relative_index = key_index - query_index + kernel_size - 1
self.register_buffer('flatten_index', relative_index.view(-1))
if stride > 1:
self.pooling = nn.AvgPool2d(stride, stride=stride)
self.reset_parameters()
def forward(self, x):
# pdb.set_trace()
if self.width:
x = x.permute(0, 2, 1, 3)
else:
x = x.permute(0, 3, 1, 2) # N, W, C, H
N, W, C, H = x.shape
x = x.contiguous().view(N * W, C, H)
# Transformations
qkv = self.bn_qkv(self.qkv_transform(x))
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)
# Calculate position embedding
all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size)
q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0)
qr = torch.einsum('bgci,cij->bgij', q, q_embedding)
kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3)
qk = torch.einsum('bgci, bgcj->bgij', q, k)
stacked_similarity = torch.cat([qk, qr, kr], dim=1)
stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1)
#stacked_similarity = self.bn_qr(qr) + self.bn_kr(kr) + self.bn_qk(qk)
# (N, groups, H, H, W)
similarity = F.softmax(stacked_similarity, dim=3)
sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding)
stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H)
output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2)
if self.width:
output = output.permute(0, 2, 1, 3)
else:
output = output.permute(0, 2, 3, 1)
if self.stride > 1:
output = self.pooling(output)
return output
def reset_parameters(self):
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
#nn.init.uniform_(self.relative, -0.1, 0.1)
nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))
class AxialAttention_dynamic(nn.Module):
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
stride=1, bias=False, width=False):
assert (in_planes % groups == 0) and (out_planes % groups == 0)
super(AxialAttention_dynamic, self).__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.groups = groups
self.group_planes = out_planes // groups
self.kernel_size = kernel_size
self.stride = stride
self.bias = bias
self.width = width
# Multi-head self attention
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
self.bn_similarity = nn.BatchNorm2d(groups * 3)
self.bn_output = nn.BatchNorm1d(out_planes * 2)
# Priority on encoding
## Initial values
self.f_qr = nn.Parameter(torch.tensor(0.1), requires_grad=False)
self.f_kr = nn.Parameter(torch.tensor(0.1), requires_grad=False)
self.f_sve = nn.Parameter(torch.tensor(0.1), requires_grad=False)
self.f_sv = nn.Parameter(torch.tensor(1.0), requires_grad=False)
# Position embedding
self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True)
query_index = torch.arange(kernel_size).unsqueeze(0)
key_index = torch.arange(kernel_size).unsqueeze(1)
relative_index = key_index - query_index + kernel_size - 1
self.register_buffer('flatten_index', relative_index.view(-1))
if stride > 1:
self.pooling = nn.AvgPool2d(stride, stride=stride)
self.reset_parameters()
# self.print_para()
def forward(self, x):
if self.width:
x = x.permute(0, 2, 1, 3)
else:
x = x.permute(0, 3, 1, 2) # N, W, C, H
N, W, C, H = x.shape
x = x.contiguous().view(N * W, C, H)
# Transformations
qkv = self.bn_qkv(self.qkv_transform(x))
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)
# Calculate position embedding
all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size)
q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0)
qr = torch.einsum('bgci,cij->bgij', q, q_embedding)
kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3)
qk = torch.einsum('bgci, bgcj->bgij', q, k)
# multiply by factors
qr = torch.mul(qr, self.f_qr)
kr = torch.mul(kr, self.f_kr)
stacked_similarity = torch.cat([qk, qr, kr], dim=1)
stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1)
#stacked_similarity = self.bn_qr(qr) + self.bn_kr(kr) + self.bn_qk(qk)
# (N, groups, H, H, W)
similarity = F.softmax(stacked_similarity, dim=3)
sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding)
# multiply by factors
sv = torch.mul(sv, self.f_sv)
sve = torch.mul(sve, self.f_sve)
stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H)
output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2)
if self.width:
output = output.permute(0, 2, 1, 3)
else:
output = output.permute(0, 2, 3, 1)
if self.stride > 1:
output = self.pooling(output)
return output
def reset_parameters(self):
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
#nn.init.uniform_(self.relative, -0.1, 0.1)
nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))
class AxialAttention_wopos(nn.Module):
def __init__(self, in_planes, out_planes, groups=8, kernel_size=56,
stride=1, bias=False, width=False):
assert (in_planes % groups == 0) and (out_planes % groups == 0)
super(AxialAttention_wopos, self).__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.groups = groups
self.group_planes = out_planes // groups
self.kernel_size = kernel_size
self.stride = stride
self.bias = bias
self.width = width
# Multi-head self attention
self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn_qkv = nn.BatchNorm1d(out_planes * 2)
self.bn_similarity = nn.BatchNorm2d(groups )
self.bn_output = nn.BatchNorm1d(out_planes * 1)
if stride > 1:
self.pooling = nn.AvgPool2d(stride, stride=stride)
self.reset_parameters()
def forward(self, x):
if self.width:
x = x.permute(0, 2, 1, 3)
else:
x = x.permute(0, 3, 1, 2) # N, W, C, H
N, W, C, H = x.shape
x = x.contiguous().view(N * W, C, H)
# Transformations
qkv = self.bn_qkv(self.qkv_transform(x))
q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2)
qk = torch.einsum('bgci, bgcj->bgij', q, k)
stacked_similarity = self.bn_similarity(qk).reshape(N * W, 1, self.groups, H, H).sum(dim=1).contiguous()
similarity = F.softmax(stacked_similarity, dim=3)
sv = torch.einsum('bgij,bgcj->bgci', similarity, v)
sv = sv.reshape(N*W,self.out_planes * 1, H).contiguous()
output = self.bn_output(sv).reshape(N, W, self.out_planes, 1, H).sum(dim=-2).contiguous()
if self.width:
output = output.permute(0, 2, 1, 3)
else:
output = output.permute(0, 2, 3, 1)
if self.stride > 1:
output = self.pooling(output)
return output
def reset_parameters(self):
self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes))
#nn.init.uniform_(self.relative, -0.1, 0.1)
# nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes))
#end of attn definition
class AxialBlock(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, kernel_size=56):
super(AxialBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.))
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv_down = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.hight_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size)
self.width_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True)
self.conv_up = conv1x1(width, planes * self.expansion)
self.bn2 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv_down(x)
out = self.bn1(out)
out = self.relu(out)
# print(out.shape)
out = self.hight_block(out)
out = self.width_block(out)
out = self.relu(out)
out = self.conv_up(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AxialBlock_dynamic(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, kernel_size=56):
super(AxialBlock_dynamic, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.))
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv_down = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.hight_block = AxialAttention_dynamic(width, width, groups=groups, kernel_size=kernel_size)
self.width_block = AxialAttention_dynamic(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True)
self.conv_up = conv1x1(width, planes * self.expansion)
self.bn2 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv_down(x)
out = self.bn1(out)
out = self.relu(out)
out = self.hight_block(out)
out = self.width_block(out)
out = self.relu(out)
out = self.conv_up(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AxialBlock_wopos(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, kernel_size=56):
super(AxialBlock_wopos, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
# print(kernel_size)
width = int(planes * (base_width / 64.))
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv_down = conv1x1(inplanes, width)
self.conv1 = nn.Conv2d(width, width, kernel_size = 1)
self.bn1 = norm_layer(width)
self.hight_block = AxialAttention_wopos(width, width, groups=groups, kernel_size=kernel_size)
self.width_block = AxialAttention_wopos(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True)
self.conv_up = conv1x1(width, planes * self.expansion)
self.bn2 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
# pdb.set_trace()
out = self.conv_down(x)
out = self.bn1(out)
out = self.relu(out)
# print(out.shape)
out = self.hight_block(out)
out = self.width_block(out)
out = self.relu(out)
out = self.conv_up(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
#end of block definition
class ResAxialAttentionUNet(nn.Module):
def __init__(self, block, layers, num_classes=2, zero_init_residual=True,
groups=8, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, s=0.125, img_size = 128,imgchan = 3):
super(ResAxialAttentionUNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = int(64 * s)
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.bn2 = norm_layer(128)
self.bn3 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2))
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2),
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, int(512 * s), layers[2], stride=2, kernel_size=(img_size//4),
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, int(1024 * s), layers[3], stride=2, kernel_size=(img_size//8),
dilate=replace_stride_with_dilation[2])
# Decoder
self.decoder1 = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
self.decoder2 = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
self.decoder3 = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
self.soft = nn.Softmax(dim=1)
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups,
base_width=self.base_width, dilation=previous_dilation,
norm_layer=norm_layer, kernel_size=kernel_size))
self.inplanes = planes * block.expansion
if stride != 1:
kernel_size = kernel_size // 2
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer, kernel_size=kernel_size))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# AxialAttention Encoder
# pdb.set_trace()
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
# print(x2.shape)
x3 = self.layer3(x2)
# print(x3.shape)
x4 = self.layer4(x3)
x = F.relu(F.interpolate(self.decoder1(x4), scale_factor=(2,2), mode ='bilinear'))
x = torch.add(x, x4)
x = F.relu(F.interpolate(self.decoder2(x) , scale_factor=(2,2), mode ='bilinear'))
x = torch.add(x, x3)
x = F.relu(F.interpolate(self.decoder3(x) , scale_factor=(2,2), mode ='bilinear'))
x = torch.add(x, x2)
x = F.relu(F.interpolate(self.decoder4(x) , scale_factor=(2,2), mode ='bilinear'))
x = torch.add(x, x1)
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
x = self.adjust(F.relu(x))
# pdb.set_trace()
return x
def forward(self, x):
return self._forward_impl(x)
class medt_net(nn.Module):
def __init__(self, block, block_2, layers, num_classes=2, zero_init_residual=True,
groups=8, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, s=0.125, img_size = 128,imgchan = 3):
super(medt_net, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = int(64 * s)
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.conv2 = nn.Conv2d(self.inplanes, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.conv3 = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.bn2 = norm_layer(128)
self.bn3 = norm_layer(self.inplanes)
# self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, int(128 * s), layers[0], kernel_size= (img_size//2))
self.layer2 = self._make_layer(block, int(256 * s), layers[1], stride=2, kernel_size=(img_size//2),
dilate=replace_stride_with_dilation[0])
# self.layer3 = self._make_layer(block, int(512 * s), layers[2], stride=2, kernel_size=(img_size//4),
# dilate=replace_stride_with_dilation[1])
# self.layer4 = self._make_layer(block, int(1024 * s), layers[3], stride=2, kernel_size=(img_size//8),
# dilate=replace_stride_with_dilation[2])
# Decoder
# self.decoder1 = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
# self.decoder2 = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
# self.decoder3 = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
self.decoder4 = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
self.decoder5 = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
self.adjust = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
self.soft = nn.Softmax(dim=1)
self.conv1_p = nn.Conv2d(imgchan, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.conv2_p = nn.Conv2d(self.inplanes,128, kernel_size=3, stride=1, padding=1,
bias=False)
self.conv3_p = nn.Conv2d(128, self.inplanes, kernel_size=3, stride=1, padding=1,
bias=False)
# self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1_p = norm_layer(self.inplanes)
self.bn2_p = norm_layer(128)
self.bn3_p = norm_layer(self.inplanes)
self.relu_p = nn.ReLU(inplace=True)
img_size_p = img_size // 4
self.layer1_p = self._make_layer(block_2, int(128 * s), layers[0], kernel_size= (img_size_p//2))
self.layer2_p = self._make_layer(block_2, int(256 * s), layers[1], stride=2, kernel_size=(img_size_p//2),
dilate=replace_stride_with_dilation[0])
self.layer3_p = self._make_layer(block_2, int(512 * s), layers[2], stride=2, kernel_size=(img_size_p//4),
dilate=replace_stride_with_dilation[1])
self.layer4_p = self._make_layer(block_2, int(1024 * s), layers[3], stride=2, kernel_size=(img_size_p//8),
dilate=replace_stride_with_dilation[2])
# Decoder
self.decoder1_p = nn.Conv2d(int(1024 *2*s) , int(1024*2*s), kernel_size=3, stride=2, padding=1)
self.decoder2_p = nn.Conv2d(int(1024 *2*s) , int(1024*s), kernel_size=3, stride=1, padding=1)
self.decoder3_p = nn.Conv2d(int(1024*s), int(512*s), kernel_size=3, stride=1, padding=1)
self.decoder4_p = nn.Conv2d(int(512*s) , int(256*s), kernel_size=3, stride=1, padding=1)
self.decoder5_p = nn.Conv2d(int(256*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
self.decoderf = nn.Conv2d(int(128*s) , int(128*s) , kernel_size=3, stride=1, padding=1)
self.adjust_p = nn.Conv2d(int(128*s) , num_classes, kernel_size=1, stride=1, padding=0)
self.soft_p = nn.Softmax(dim=1)
def _make_layer(self, block, planes, blocks, kernel_size=56, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, groups=self.groups,
base_width=self.base_width, dilation=previous_dilation,
norm_layer=norm_layer, kernel_size=kernel_size))
self.inplanes = planes * block.expansion
if stride != 1:
kernel_size = kernel_size // 2
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer, kernel_size=kernel_size))
return nn.Sequential(*layers)
def _forward_impl(self, x):
xin = x.clone()
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
# x = F.max_pool2d(x,2,2)
x = self.relu(x)
# x = self.maxpool(x)
# pdb.set_trace()
x1 = self.layer1(x)
# print(x1.shape)
x2 = self.layer2(x1)
# print(x2.shape)
# x3 = self.layer3(x2)
# # print(x3.shape)
# x4 = self.layer4(x3)
# # print(x4.shape)
# x = F.relu(F.interpolate(self.decoder1(x4), scale_factor=(2,2), mode ='bilinear'))
# x = torch.add(x, x4)
# x = F.relu(F.interpolate(self.decoder2(x4) , scale_factor=(2,2), mode ='bilinear'))
# x = torch.add(x, x3)
# x = F.relu(F.interpolate(self.decoder3(x3) , scale_factor=(2,2), mode ='bilinear'))
# x = torch.add(x, x2)
x = F.relu(F.interpolate(self.decoder4(x2) , scale_factor=(2,2), mode ='bilinear'))
x = torch.add(x, x1)
x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
# print(x.shape)
# end of full image training
# y_out = torch.ones((1,2,128,128))
x_loc = x.clone()
# x = F.relu(F.interpolate(self.decoder5(x) , scale_factor=(2,2), mode ='bilinear'))
#start
for i in range(0,4):
for j in range(0,4):
x_p = xin[:,:,32*i:32*(i+1),32*j:32*(j+1)]
# begin patch wise
x_p = self.conv1_p(x_p)
x_p = self.bn1_p(x_p)
# x = F.max_pool2d(x,2,2)
x_p = self.relu(x_p)
x_p = self.conv2_p(x_p)
x_p = self.bn2_p(x_p)
# x = F.max_pool2d(x,2,2)
x_p = self.relu(x_p)
x_p = self.conv3_p(x_p)
x_p = self.bn3_p(x_p)
# x = F.max_pool2d(x,2,2)
x_p = self.relu(x_p)
# x = self.maxpool(x)
# pdb.set_trace()
x1_p = self.layer1_p(x_p)
# print(x1.shape)
x2_p = self.layer2_p(x1_p)
# print(x2.shape)
x3_p = self.layer3_p(x2_p)
# # print(x3.shape)
x4_p = self.layer4_p(x3_p)
x_p = F.relu(F.interpolate(self.decoder1_p(x4_p), scale_factor=(2,2), mode ='bilinear'))
x_p = torch.add(x_p, x4_p)
x_p = F.relu(F.interpolate(self.decoder2_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
x_p = torch.add(x_p, x3_p)
x_p = F.relu(F.interpolate(self.decoder3_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
x_p = torch.add(x_p, x2_p)
x_p = F.relu(F.interpolate(self.decoder4_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
x_p = torch.add(x_p, x1_p)
x_p = F.relu(F.interpolate(self.decoder5_p(x_p) , scale_factor=(2,2), mode ='bilinear'))
x_loc[:,:,32*i:32*(i+1),32*j:32*(j+1)] = x_p
x = torch.add(x,x_loc)
x = F.relu(self.decoderf(x))
x = self.adjust(F.relu(x))
# pdb.set_trace()
return x
def forward(self, x, text_dummy):
return self.soft(self._forward_impl(x)),0
def axialunet(pretrained=False, **kwargs):
model = ResAxialAttentionUNet(AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs)
return model
def gated(pretrained=False, **kwargs):
model = ResAxialAttentionUNet(AxialBlock_dynamic, [1, 2, 4, 1], s= 0.125, **kwargs)
return model
def MedT(pretrained=False, **kwargs):
model = medt_net(AxialBlock_dynamic,AxialBlock_wopos, [1, 2, 4, 1], s= 0.125, **kwargs)
return model
def logo(pretrained=False, **kwargs):
model = medt_net(AxialBlock,AxialBlock, [1, 2, 4, 1], s= 0.125, **kwargs)
return model
# EOF