SALT-SAM / AllinonSAM /data_utils.py
pythn's picture
Upload with huggingface_hub
4a1f918 verified
import random
import argparse
import os
import sys
import numpy as np
import pandas as pd
import torch
from matplotlib import pyplot as plt
from PIL import Image
from torch.utils.data import Dataset, TensorDataset
from torchvision import datasets, models
from torchvision import transforms
from torchvision.transforms import functional as F
from torch.nn.functional import pad
from skimage.transform import resize
import nibabel as nib
import time
import json
from data_transforms.endovis_transform import ENDOVIS_Transform
from data_transforms.endovis_18_transform import ENDOVIS_18_Transform
from data_transforms.cholec_8k_transform import Cholec_8k_Transform
from data_transforms.ultrasound_transform import Ultrasound_Transform
from data_transforms.kvasirSeg_transform import kvasirSeg_Transform
from data_transforms.ChestXDet_transform import ChestXDet_Transform
from data_transforms.lits2_transform import LiTS2_Transform
from data_transforms.btcv_transform import BTCV_Transform
import os
import sys
source_path = os.path.join('/home/abdelrahman.elsayed/CVPR/AllinonSAM/datasets')
sys.path.append(source_path)
from isic2018 import ISIC2018_Dataset
from polyp import Polyp_Dataset
from rite import RITE_Dataset
from glas import GLAS_Dataset
from refuge import Refuge_Dataset
from btcv import BTCV_Dataset
from atr import ATR_Dataset
from arcade import ArcadeDataset
def make_positive_negative_files(config, output_root, label_dict, populated_img_path_list, populated_gt_list, populated_classname_list, rgb_gt = False, name_prefix='val'):
# generates positive and negative example files for each class
#positive example file has a list of all images and labels where the class is present
#negative example file has a list of all images where the class is not present
os.makedirs(output_root, exist_ok=True)
assert(len(populated_classname_list) == len(populated_gt_list))
assert(len(populated_classname_list) == len(populated_img_path_list))
main_dict = {}
#make dicts for every class
for c in np.unique(populated_classname_list):
print(c)
main_dict[c] = {}
main_dict[c]['pos_img'] = []
main_dict[c]['pos_label'] = []
main_dict[c]['neg_img'] = []
for i in range(len(populated_classname_list)):
class_name = populated_classname_list[i]
gt_path = populated_gt_list[i]
im_path = populated_img_path_list[i]
#check if gt is all blank
if rgb_gt:
gt = np.array(Image.open(gt_path).convert("RGB"))
# if config['data']['volume_channel']==2:
# gt = gt.permute(2,0,1)
mask = np.zeros((gt.shape[0], gt.shape[1]))
else:
gt = np.array(Image.open(gt_path))
if len(gt.shape)==3:
gt = gt[:,:,0]
if gt.max()<2:
gt = (gt*255).astype(int)
mask = np.zeros((gt.shape[0], gt.shape[1]))
H,W = mask.shape
selected_color_list = label_dict[class_name]
temp = np.zeros((H,W)).astype('uint8')
if rgb_gt:
for c in selected_color_list:
temp = temp | (np.all(np.where(gt==c,1,0),axis=2))
else:
temp = (gt==label_dict[class_name])
mask[:,:] = temp
if mask.any():
main_dict[class_name]['pos_img'].append(im_path)
main_dict[class_name]['pos_label'].append(gt_path)
else:
main_dict[class_name]['neg_img'].append(im_path)
with open(os.path.join(output_root, name_prefix+"_pos_neg_dict.json"),'w') as fp:
json.dump(main_dict, fp)
print("json file successfully created")
return
class Slice_Transforms:
def __init__(self, config=None):
#SAM encoder expects images to be centered around tehe following mean and variance, how to change it for medical datasets?
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1,1,1).unsqueeze(0)
self.pixel_std = torch.Tensor([53.395, 57.12, 57.375]).view(-1,1,1).unsqueeze(0)
self.img_size = config['data_transforms']['img_size']
self.resize = transforms.Resize(self.img_size-1, max_size=self.img_size, antialias=True)
# self.a_min = config['data_transforms']['a_min']
# self.a_max = config['data_transforms']['a_max']
def __call__(self, image, label, apply_mean_norm=True):
# image = torch.Tensor(image)
b_min=0
a_min = image.min()
a_max = image.max()
# if not is_mask:
#scale intensities to 0-255
b_min,b_max = 0, 255
image = (image - a_min) / (a_max - a_min)
image = image * (b_max - b_min) + b_min
image = torch.clamp(image,b_min,b_max)
image = image.int()
#center around SAM's expected mean
if apply_mean_norm:
image = (image - self.pixel_mean)/self.pixel_std
image = self.resize(image)
label = self.resize(label)
#pad if necessary
h, w = image.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
image = pad(image, (0, padw, 0, padh), value=b_min)
label = pad(label, (0, padw, 0, padh), value=0)
return image, label
class Generic_Dataset_3d(Dataset):
def __init__(self, config, is_train=False, folder_start=0, folder_end=40, shuffle_list=True, apply_norm=True, use_folder_idx=True):
super().__init__()
self.root_path = config['data']['root_path']
self.img_path_list = []
self.label_path_list = []
self.label_names_text = []
self.label_names = config['data']['label_names']
self.label_list = config['data']['label_list']
self.label_dict = config['data']['label_dict']
self.is_train = is_train
self.folder_start = folder_start
self.folder_end = folder_end
self.config = config
self.final_img_path_list = []
self.final_label_path_list = []
self.final_label_names_list = []
self.final_position_list = []
self.use_folder_idx = use_folder_idx
#can be one of 2d_gaussian, 2d, 3d
self.mode = "2d_gaussian"
self.apply_norm = apply_norm
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_names_text = [self.label_names_text[pi] for pi in p]
#define data transforms
self.transform = Slice_Transforms(config=config)
def populate_lists(self):
# print(self.folder_start, self.folder_end, self.label_list)
if self.use_folder_idx:
for case_no in sorted(os.listdir(os.path.join(self.root_path,'images'))):
if '.DS_Store' in case_no:
continue
case_idx = int(case_no[:case_no.find('.')])
if not((case_idx>=self.folder_start) and (case_idx<self.folder_end)):
continue
im_path = os.path.join(self.root_path, 'images',case_no)
label_path = os.path.join(self.root_path, 'labels', case_no)
for i in range(len(self.label_list)):
self.img_path_list.append(im_path)
self.label_path_list.append(label_path)
self.label_names_text.append(self.label_names[i])
else:
if self.is_train:
for case_no in sorted(os.listdir(os.path.join(self.root_path,'train','images'))):
if '.DS_Store' in case_no:
continue
im_path = os.path.join(self.root_path, 'train', 'images',case_no)
label_path = os.path.join(self.root_path, 'train', 'labels', case_no)
for i in range(len(self.label_list)):
self.img_path_list.append(im_path)
self.label_path_list.append(label_path)
self.label_names_text.append(self.label_names[i])
else:
for case_no in sorted(os.listdir(os.path.join(self.root_path,'val','images'))):
if '.DS_Store' in case_no:
continue
im_path = os.path.join(self.root_path, 'val', 'images',case_no)
label_path = os.path.join(self.root_path, 'val', 'labels', case_no)
for i in range(len(self.label_list)):
self.img_path_list.append(im_path)
self.label_path_list.append(label_path)
self.label_names_text.append(self.label_names[i])
def __len__(self):
assert(len(self.img_path_list)==len(self.label_path_list))
return len(self.img_path_list)
def __getitem__(self, index):
#load masks and images
im = nib.load(self.img_path_list[index])
label_text = self.label_names_text[index]
# label_segmask_no = self.label_list[self.label_names.index(label_text)]
mask = nib.load(self.label_path_list[index])
mask = np.asanyarray(mask.dataobj)
#convert general mask into prompted segmentation mask per according to label name
gold = (mask==self.label_dict[label_text])
gold = torch.Tensor(gold+0)
#convert to C, H, W
if self.config['data']['volume_channel']==2:
gold = gold.permute(2,0,1)
if self.mode == '2d_gaussian':
# use gaussian with mean as the slice with biggest mask and a big variance
mu, sigma = (torch.argmax(torch.sum(gold, dim=(1,2)))), self.config['data']['sampling_deviation'] # mean and standard deviation
s = (np.random.normal(mu, sigma, self.config['data']['samples_per_slice'])).astype(int)
s = [max(i,0) for i in s]
s = [min(i,gold.shape[0]-2) for i in s]
try:
gold = gold[s]
except:
s = (np.random.normal(mu, sigma, self.config['data']['samples_per_slice'])).astype(int)
s = [max(i,0) for i in s]
s = [min(i,gold.shape[0]-2) for i in s]
gold = gold[s]
#image loading and conversion to rgb by replicating channels
if self.config['data']['volume_channel']==2: #data originally is HXWXC
im = (torch.Tensor(np.asanyarray(im.dataobj)).permute(2,0,1).unsqueeze(1).repeat(1,3,1,1))[s]
else: #data originally is CXHXW
im = (torch.Tensor(np.asanyarray(im.dataobj)).unsqueeze(1).repeat(1,3,1,1))[s]
elif self.mode == '2d':
#image loading and conversion to rgb by replicating channels
if self.config['data']['volume_channel']==2: #data originally is HXWXC
im = (torch.Tensor(np.asanyarray(im.dataobj)).permute(2,0,1).unsqueeze(1).repeat(1,3,1,1))
else: #data originally is CXHXW
im = (torch.Tensor(np.asanyarray(im.dataobj)).unsqueeze(1).repeat(1,3,1,1))
num_slices = im.shape[0]
s = (np.random.uniform(0,num_slices, self.config['data']['samples_per_slice'])).astype(int)
gold = gold[s]
im = im[s]
elif self.mode =='3d':
#image loading and conversion to rgb by replicating channels
s = [0]
if self.config['data']['volume_channel']==2: #data originally is HXWXC
im = (torch.Tensor(np.asanyarray(im.dataobj)).permute(2,0,1).unsqueeze(1).repeat(1,3,1,1))
else: #data originally is CXHXW
im = (torch.Tensor(np.asanyarray(im.dataobj)).unsqueeze(1).repeat(1,3,1,1))
im, gold = self.transform(im, gold, apply_mean_norm=self.apply_norm)
gold = (gold>=0.5)+0
return im, gold, self.label_dict[label_text], label_text, s
class IDRID_Transform():
def __init__(self, config):
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1,1,1)
self.pixel_std = torch.Tensor([53.395, 57.12, 57.375]).view(-1,1,1)
self.degree = config['data_transforms']['rotation_angle']
self.saturation = config['data_transforms']['saturation']
self.brightness = config['data_transforms']['brightness']
self.img_size = config['data_transforms']['img_size']
self.resize = transforms.Resize(self.img_size-1, max_size=self.img_size, antialias=True)
self.data_transforms = config['data_transforms']
def __call__(self, img, mask, apply_norm, is_train):
#crop the image so that only the main arrea is in consideration
img = img[:,:,270:3700]
mask = mask[:,:,270:3700]
if is_train:
#flip horizontally with some probability
if self.data_transforms['use_horizontal_flip']:
p = random.random()
if p<0.5:
img = F.hflip(img)
mask = F.hflip(mask)
#rotate with p1 probability
if self.data_transforms['use_rotation']:
p = random.random()
if p<0.5:
img = F.rotate(img, angle = self.degree)
mask = F.rotate(mask, angle=self.degree)
#adjust saturation with some probability
if self.data_transforms['use_saturation']:
p = random.random()
if p<0.2:
img = F.adjust_saturation(img, self.saturation)
#adjust brightness with some probability
if self.data_transforms['use_brightness']:
p = random.random()
if p<0.5:
img = F.adjust_brightness(img, self.brightness*random.random())
#take random crops of img size X img_size such that label is non zero
if self.data_transforms['use_random_crop']:
fallback = 20
fall_back_ctr = 0
repeat_flag = True
while(repeat_flag):
fall_back_ctr += 1
t = transforms.RandomCrop((self.img_size, self.img_size))
i,j,h,w = t.get_params(img, (self.img_size, self.img_size))
#if mask is all zeros, exit the loop
if not mask.any():
repeat_flag = False
#fallback to avoid long loops
if fall_back_ctr >= fallback:
temp1, temp2, temp3 = np.where(mask!=0)
point_of_interest = random.choice(list(range(len(temp2))))
i = temp2[point_of_interest] - (h//2)
j = temp3[point_of_interest] - (w//2)
repeat_flag = False
cropped_img = F.crop(img, i, j, h, w)
cropped_mask = F.crop(mask, i, j, h, w)
if cropped_mask.any():
repeat_flag = False
img = cropped_img
mask = cropped_mask
else:
#if no random crops then perform resizing
img = self.resize(img)
mask = self.resize(mask)
#pad if necessary
h, w = img.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
img = pad(img, (0, padw, 0, padh), value=b_min)
mask = pad(mask, (0, padw, 0, padh), value=b_min)
#apply centering based on SAM's expected mean and variance
if apply_norm:
b_min=0
#scale intensities to 0-255
b_min,b_max = 0, 255
img = (img - self.data_transforms['a_min']) / (self.data_transforms['a_max'] - self.data_transforms['a_min'])
img = img * (b_max - b_min) + b_min
img = torch.clamp(img,b_min,b_max)
#center around SAM's expected mean
img = (img - self.pixel_mean)/self.pixel_std
return img, mask
class IDRID_Dataset(Dataset):
def __init__(self, config, is_train=False, folder_start=0, folder_end=40, shuffle_list=True, apply_norm=True):
super().__init__()
self.root_path = config['data']['root_path']
self.img_path_list = []
self.label_path_list = []
self.label_names_text = []
self.label_names = config['data']['label_names']
self.label_list = config['data']['label_list']
self.is_train = is_train
self.folder_start = folder_start
self.folder_end = folder_end
self.config = config
self.apply_norm = apply_norm
self.acronym = {
'Microaneurysms': 'MA',
'Haemorrhages': 'HE',
'Hard Exudates': 'EX',
'Optic Disc': 'OD',
'Soft Exudates': 'SE'
}
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_names_text = [self.label_names_text[pi] for pi in p]
#define data transforms
self.idrid_transform = IDRID_Transform(config = config)
def populate_lists(self):
# print(self.folder_start, self.folder_end, self.label_list)
for case_no in sorted(os.listdir(os.path.join(self.root_path,'images'))):
case_idx = int(case_no[case_no.find('_')+1:case_no.find('.')])
if not((case_idx>=self.folder_start) and (case_idx<self.folder_end)):
continue
im_path = os.path.join(self.root_path, 'images',case_no)
for i in range(len(self.label_list)):
#need to do this for this dataset
modified_case_no = case_no[:-4]+'_'+self.acronym[self.label_names[i]]+'.tif'
label_path = os.path.join(self.root_path, 'labels', self.label_names[i], modified_case_no)
self.img_path_list.append(im_path)
self.label_path_list.append(label_path)
self.label_names_text.append(self.label_names[i])
def __len__(self):
assert(len(self.img_path_list)==len(self.label_path_list))
return len(self.img_path_list)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index])))
try:
label = torch.Tensor(np.array(Image.open(self.label_path_list[index])))
except:
#no label for this image is equivalent to all black label
label = torch.zeros((self.config['data_transforms']['img_size'], self.config['data_transforms']['img_size']))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
label = label.unsqueeze(0)
print("before idrid transform: ", img.shape)
img, label = self.idrid_transform(img, label, apply_norm=self.apply_norm, is_train = self.is_train)
print("after idrid transform: ", img.shape)
label_text = self.label_names_text[index]
label_segmask_no = self.label_list[self.label_names.index(label_text)]
#idrid has separate masks according to the labels already, so no extra processing needed
label=label[0]
label = (label>=0.5)+0
# print('debug5: ', label.shape, label.any())
return img, label, label_segmask_no, label_text
class Ultrasound_Dataset(Dataset):
def __init__(self, config, is_train=False, apply_norm=True, shuffle_list=True, no_text_mode=False):
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.label_names = config['data']['label_names']
self.config = config
self.apply_norm = apply_norm
self.no_text_mode = no_text_mode
self.data_transform = Ultrasound_Transform(config=config)
self.label_dict = {
'Liver': [[100,0,100]],
'Kidney': [[255,255,0]],
'Pancreas': [[0,0,255]],
'Vessels': [[255,0,0]],
'Adrenals': [[0,255,255]],
'Gall Bladder': [[0,255,0]],
'Bones': [[255,255,255]],
'Spleen': [[255,0,255]]
}
self.num_classes = len(list(self.label_dict.keys()))
if self.is_train:
self.ctlist = ['ct1','ct2','ct3','ct4','ct5','ct6','ct7','ct8','ct9','ct10','ct11','ct12']
else:
self.ctlist = ['ct13','ct14','ct15']
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
def populate_lists(self):
imgs_path = os.path.join(self.root_path, 'images/train')
labels_path = os.path.join(self.root_path, 'annotations/train')
for img in os.listdir(imgs_path):
ct = img[:img.find('-')]
if ct not in self.ctlist:
continue
if self.no_text_mode:
self.img_names.append(img)
self.img_path_list.append(os.path.join(imgs_path,img))
self.label_path_list.append(os.path.join(labels_path, img))
self.label_list.append('')
else:
for label_name in self.label_names:
self.img_names.append(img)
self.img_path_list.append(os.path.join(imgs_path,img))
self.label_path_list.append(os.path.join(labels_path, img))
self.label_list.append(label_name)
def __len__(self):
return len(self.img_path_list)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
try:
label = (np.array(Image.open(self.label_path_list[index]).convert("RGB")))
except:
label = np.zeros(img.shape[0], img.shape[1], 1)
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
if self.no_text_mode:
mask = np.zeros((self.num_classes,img.shape[1], img.shape[2]))
for i,c in enumerate(list(self.label_dict.keys())):
temp = np.zeros(label.shape).astype('uint8')[:,:,0]
selected_color_list = self.label_dict[c]
for c in selected_color_list:
temp = temp | (np.all(np.where(label==c,1,0),axis=2))
mask[i,:,:] = temp
mask = torch.Tensor(mask)
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
mask = (mask>=0.5)+0
label_of_interest = ''
else:
temp = np.zeros(label.shape).astype('uint8')[:,:,0]
selected_color_list = self.label_dict[self.label_list[index]]
for c in selected_color_list:
temp = temp | (np.all(np.where(label==c,1,0),axis=2))
mask = torch.Tensor(temp).unsqueeze(0)
label_of_interest = self.label_list[index]
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
#convert all grayscale pixels due to resizing back to 0, 1
mask = (mask>=0.5)+0
mask = mask[0]
return img, mask, self.img_path_list[index], label_of_interest
class Cholec_Ins_Dataset(Dataset):
def __init__(self, config, is_train=False, apply_norm=True, shuffle_list=True, no_text_mode=False) -> None:
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.label_names = config['data']['label_names']
self.config = config
self.no_text_mode = no_text_mode
self.shuffle_list = shuffle_list
self.apply_norm = apply_norm
self.data_transform = Cholec_8k_Transform(config=config)
self.label_dict = {
'Grasper':31,
'L Hook Electrocautery':32,
'Liver':21,
'Fat':12,
'Gall Bladder':22,
'Abdominal Wall':11,
'Gastrointestinal Tract':13,
'Cystic Duct':25,
'Blood':24,
'Hepatic Vein':33,
'Liver Ligament':5,
'Connective Tissue':23
}
self.num_classes = len(list(self.label_dict.keys()))
if is_train:
self.folder_list = ['video01','video09','video18','video20','video24','video25', 'video26','video35', 'video43', 'video55', 'video28', 'video37']
else:
# self.folder_list = ['video17','video52']
self.folder_list = ['video12','video27']
#populate the above lists
self.populate_lists()
#get positive negative lists dictionary
try:
if is_train:
fp = open(os.path.join(self.root_path,'train_pos_neg_dict.json'))
else:
fp = open(os.path.join(self.root_path,'val_pos_neg_dict.json'))
self.pos_neg_dict = json.load(fp)
except:
print("Passing because pos neg json not found")
pass
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
# self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
self.final_img_path_list = self.img_path_list
self.final_label_list = self.label_list
self.final_label_path_list = self.label_path_list
def populate_lists(self):
for folder in (self.folder_list):
path1 = os.path.join(self.root_path, folder)
for sub in sorted(os.listdir(path1)):
path2 = os.path.join(path1, sub)
for im in sorted(os.listdir(path2)):
if 'endo.png' not in im:
continue
im_path = os.path.join(path2, im)
im_name = im[:-4]
label_img_path = os.path.join(path2, im_name+'_watershed_mask.png')
if self.no_text_mode:
self.img_names.append(im_name)
self.img_path_list.append(os.path.join(im_path))
self.label_path_list.append(os.path.join(label_img_path))
self.label_list.append('')
else:
for label_name in self.label_names:
self.img_names.append(im_name)
self.img_path_list.append(im_path)
self.label_path_list.append(label_img_path)
self.label_list.append(label_name)
def one_time_generate_pos_neg_list_dicts(self, prefix):
make_positive_negative_files(self.config, self.root_path, self.label_dict, self.img_path_list, self.label_path_list, self.label_list, name_prefix=prefix)
def generate_examples(self, neg2pos_ratio=2):
self.final_img_path_list = []
self.final_img_names = []
self.final_label_path_list = []
self.final_label_list = []
for c in self.pos_neg_dict:
for i,pos_im in enumerate(self.pos_neg_dict[c]['pos_img']):
self.final_img_path_list.append(pos_im)
self.final_label_path_list.append(self.pos_neg_dict[c]['pos_label'][i])
self.final_label_list.append(c)
# print(c, len(self.pos_neg_dict[c]['pos_img']), len(self.pos_neg_dict[c]['neg_img']))
try:
selected_neg_samples = random.sample(self.pos_neg_dict[c]['neg_img'], neg2pos_ratio*len(self.pos_neg_dict[c]['pos_img']))
except:
selected_neg_samples = self.pos_neg_dict[c]['neg_img']
self.final_img_path_list = self.final_img_path_list + selected_neg_samples
self.final_label_path_list = self.final_label_path_list + [None]*len(selected_neg_samples)
self.final_label_list = self.final_label_list + [c]*len(selected_neg_samples)
#shuffle if required
if self.shuffle_list:
p = [x for x in range(len(self.final_img_path_list))]
random.shuffle(p)
self.final_img_path_list = [self.final_img_path_list[pi] for pi in p]
self.final_label_path_list = [self.final_label_path_list[pi] for pi in p]
self.final_label_list = [self.final_label_list[pi] for pi in p]
return
def __len__(self):
return len(self.final_img_path_list)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.final_img_path_list[index]).convert("RGB")))
label_of_interest = self.final_label_list[index]
if self.final_label_path_list[index] is None:
gold = np.zeros_like(img)
else:
gold = np.array(Image.open(self.final_label_path_list[index]))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
if len(gold.shape)==3:
gold = gold[:,:,0]
if gold.max()<2:
gold = (gold*255).astype(int)
if self.no_text_mode:
mask = np.zeros((self.num_classes,img.shape[1], img.shape[2]))
for i,c in enumerate(list(self.label_dict.keys())):
mask[i,:,:] = (gold==self.label_dict[c])
mask = torch.Tensor(mask)
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
mask = (mask>=0.5)+0
label_of_interest = ''
else:
# plt.imshow(gold)
# plt.show()
mask = (gold==self.label_dict[label_of_interest])
mask = torch.Tensor(mask+0)
mask = torch.Tensor(mask).unsqueeze(0)
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
# plt.imshow(mask, cmap='gray')
# plt.show()
#convert all grayscale pixels due to resizing back to 0, 1
mask = (mask>=0.5)+0
mask = mask[0]
# plt.imshow(mask, cmap='gray')
# plt.show()
return img, mask, self.final_img_path_list[index], label_of_interest
class ChestXDet_Dataset(Dataset):
def __init__(self, config, start = 0, end = 69565, is_train=False, apply_norm=True, shuffle_list=True, no_text_mode=False) -> None:
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.label_names = config['data']['label_names']
self.config = config
self.no_text_mode = no_text_mode
self.apply_norm = apply_norm
self.start = start
self.end = end
self.data_transform = ChestXDet_Transform(config=config)
self.label_dict = {
'Effusion': 1,
'Nodule': 2,
'Cardiomegaly': 3,
'Fibrosis': 4,
'Consolidation': 5,
'Emphysema': 6,
'Mass': 7,
'Fracture': 8,
'Calcification': 9,
'Pleural Thickening': 10,
'Pneumothorax': 11,
'Atelectasis': 12,
'Diffuse Nodule': 13
}
self.num_classes = len(list(self.label_dict.keys()))
#populate the above lists
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
def populate_lists(self):
im_folder_path = os.path.join(self.root_path, 'images')
mask_folder_path = os.path.join(self.root_path, 'masks')
for im in os.listdir(im_folder_path):
if (int(im[:im.find('.')]) >= self.start) and (int(im[:im.find('.')])<=self.end):
im_path = os.path.join(im_folder_path, im)
label_img_path = os.path.join(mask_folder_path, im)
if self.no_text_mode:
self.img_names.append(im)
self.img_path_list.append(im_path)
self.label_path_list.append(label_img_path)
self.label_list.append('')
else:
for label_name in self.label_names:
self.img_names.append(im)
self.img_path_list.append(im_path)
self.label_path_list.append(label_img_path)
self.label_list.append(label_name)
def __len__(self):
return len(self.img_path_list)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
label_of_interest = self.label_list[index]
gold = np.array(Image.open(self.label_path_list[index]))
if len(gold.shape)==3:
gold = gold[:,:,0]
if self.no_text_mode:
mask = np.zeros((self.num_classes,img.shape[1], img.shape[2]))
for i,c in enumerate(list(self.label_dict.keys())):
mask[i,:,:] = (gold==self.label_dict[c])
mask = torch.Tensor(mask)
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
mask = (mask>=0.5)+0
label_of_interest = ''
else:
# plt.imshow(gold)
# plt.show()
mask = (gold==self.label_dict[label_of_interest])
mask = torch.Tensor(mask+0)
mask = torch.Tensor(mask).unsqueeze(0)
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
# plt.imshow(mask, cmap='gray')
# plt.show()
#convert all grayscale pixels due to resizing back to 0, 1
mask = (mask>=0.5)+0
mask = mask[0]
# plt.imshow(mask, cmap='gray')
# plt.show()
return img, mask, self.img_path_list[index], label_of_interest
class Endovis_18(Dataset):
def __init__(self, config, start=0, end=200, is_train=False, shuffle_list = True, apply_norm=True, no_text_mode=False):
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.start = start
self.end = end
self.shuffle_list = shuffle_list
self.label_names = config['data']['label_names']
self.config = config
self.no_text_mode = no_text_mode
self.apply_norm = apply_norm
if self.is_train:
self.seqs = ['seq_1', 'seq_2', 'seq_3', 'seq_5', 'seq_6', 'seq_9', 'seq_10', 'seq_11', 'seq_13', 'seq_14', 'seq_15']
else:
self.seqs = ['seq_4', 'seq_7', 'seq_12', 'seq_16']
self.label_dict = {
'background tissue': [[0,0,0]],
'surgical instrument': [[0,255,0],[0,255,255],[125,255,12]],
'kidney parenchyma': [[255,55,0]],
'covered kidney': [[24,55,125]],
'thread': [[187,155,25]],
'clamps': [[0,255,125]],
'suturing needle': [[255,255,125]],
'suction instrument': [[123,15,175]],
'small intestine': [[124,155,5]],
'ultrasound probe': [[12,255,141]]
}
self.num_classes = len(list(self.label_dict.keys()))
self.populate_lists()
#get positive negative lists dictionary
if config['data']['negative_to_positive_ratio']>0:
try:
if is_train:
fp = open(os.path.join(self.root_path,'train_pos_neg_dict.json'))
else:
fp = open(os.path.join(self.root_path,'val_pos_neg_dict.json'))
self.pos_neg_dict = json.load(fp)
except:
print("Passing because pos neg json not found")
pass
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
# self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
self.final_img_path_list = self.img_path_list
self.final_label_list = self.label_list
self.final_label_path_list = self.label_path_list
#define data transform
self.data_transform = ENDOVIS_18_Transform(config=config)
def populate_lists(self):
#generate dataset for instrument 1 4 training
for dataset_num in os.listdir(self.root_path):
if 'json' in dataset_num:
continue
for seq in os.listdir(os.path.join(self.root_path, dataset_num)):
if seq not in self.seqs:
continue
lbl_folder_path = os.path.join(self.root_path, dataset_num, seq, 'labels')
frames_folder_path = os.path.join(self.root_path, dataset_num, seq, 'left_frames')
for frame_no in os.listdir(frames_folder_path):
if 'png' not in frame_no:
continue
if self.no_text_mode:
self.img_names.append(frame_no)
self.img_path_list.append(os.path.join(frames_folder_path,frame_no))
self.label_path_list.append(os.path.join(lbl_folder_path, frame_no))
self.label_list.append('')
else:
for label_name in self.label_names:
lbl_path = os.path.join(lbl_folder_path,frame_no)
self.img_names.append(frame_no)
self.img_path_list.append(os.path.join(frames_folder_path, frame_no))
self.label_list.append(label_name)
self.label_path_list.append(lbl_path)
def one_time_generate_pos_neg_list_dicts(self, prefix):
make_positive_negative_files(self.config, self.root_path, self.label_dict, self.img_path_list, self.label_path_list, self.label_list, name_prefix=prefix, rgb_gt=True)
def generate_examples(self, neg2pos_ratio=2):
self.final_img_path_list = []
self.final_img_names = []
self.final_label_path_list = []
self.final_label_list = []
for c in self.pos_neg_dict:
for i,pos_im in enumerate(self.pos_neg_dict[c]['pos_img']):
self.final_img_path_list.append(pos_im)
self.final_label_path_list.append(self.pos_neg_dict[c]['pos_label'][i])
self.final_label_list.append(c)
# print(c, len(self.pos_neg_dict[c]['pos_img']), len(self.pos_neg_dict[c]['neg_img']))
try:
selected_neg_samples = random.sample(self.pos_neg_dict[c]['neg_img'], neg2pos_ratio*len(self.pos_neg_dict[c]['pos_img']))
except:
selected_neg_samples = self.pos_neg_dict[c]['neg_img']
self.final_img_path_list = self.final_img_path_list + selected_neg_samples
self.final_label_path_list = self.final_label_path_list + [None]*len(selected_neg_samples)
self.final_label_list = self.final_label_list + [c]*len(selected_neg_samples)
#shuffle if required
if self.shuffle_list:
p = [x for x in range(len(self.final_img_path_list))]
random.shuffle(p)
self.final_img_path_list = [self.final_img_path_list[pi] for pi in p]
self.final_label_path_list = [self.final_label_path_list[pi] for pi in p]
self.final_label_list = [self.final_label_list[pi] for pi in p]
return
def __len__(self):
return len(self.final_img_path_list)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
try:
label = (np.array(Image.open(self.label_path_list[index]).convert("RGB")))
except:
label = np.zeros(img.shape[0], img.shape[1], 1)
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
if self.no_text_mode:
mask = np.zeros((self.num_classes,img.shape[1], img.shape[2]))
for i,c in enumerate(list(self.label_dict.keys())):
temp = np.zeros(label.shape).astype('uint8')[:,:,0]
selected_color_list = self.label_dict[c]
for c in selected_color_list:
temp = temp | (np.all(np.where(label==c,1,0),axis=2))
mask[i,:,:] = temp
mask = torch.Tensor(mask)
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
mask = (mask>=0.5)+0
label_of_interest = ''
else:
temp = np.zeros(label.shape).astype('uint8')[:,:,0]
selected_color_list = self.label_dict[self.label_list[index]]
for c in selected_color_list:
temp = temp | (np.all(np.where(label==c,1,0),axis=2))
mask = torch.Tensor(temp).unsqueeze(0)
label_of_interest = self.label_list[index]
img, mask = self.data_transform(img, mask, is_train=self.is_train, apply_norm=self.apply_norm)
#convert all grayscale pixels due to resizing back to 0, 1
mask = (mask>=0.5)+0
mask = mask[0]
return img, mask, self.img_path_list[index], label_of_interest
class Endovis_Dataset(Dataset):
def __init__(self, config, start=0, end=200, is_train=False, shuffle_list = True, apply_norm=True, no_text_mode=False):
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.start = start
self.end = end
self.label_names = config['data']['label_names']
self.num_classes = len(self.label_names)
self.config = config
self.apply_norm = apply_norm
self.no_text_mode = no_text_mode
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
#define data transform
self.data_transform = ENDOVIS_Transform(config=config)
def populate_lists(self):
#generate dataset for instrument 1 4 training
for dataset_num in os.listdir(self.root_path):
if 'dataset' not in dataset_num:
continue
lbl_folder_path = os.path.join(self.root_path, dataset_num, 'ground_truth')
frames_folder_path = os.path.join(self.root_path, dataset_num, 'left_frames')
for frame_no in os.listdir(frames_folder_path):
if int(frame_no[5:8])>=self.start and int(frame_no[5:8])<self.end:
if self.no_text_mode:
self.img_names.append(frame_no)
self.img_path_list.append(os.path.join(frames_folder_path, frame_no))
self.label_path_list.append(lbl_folder_path)
self.label_list.append('')
else:
for label_name in self.label_names:
lbl_path = os.path.join(lbl_folder_path, label_name.replace(' ','_')+'_labels',frame_no)
#important decision here - include all black labels or not
# if not os.path.exists(lbl_path):
# continue
self.img_names.append(frame_no)
self.img_path_list.append(os.path.join(frames_folder_path, frame_no))
self.label_list.append(label_name)
self.label_path_list.append(lbl_path)
def __len__(self):
return len(self.img_path_list)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
if self.no_text_mode:
label = torch.zeros((self.num_classes,img.shape[1],img.shape[2]))
for i,label_name in enumerate(self.label_names):
try:
lbl_path = os.path.join(self.label_path_list[index],label_name.replace(' ','_')+'_labels',self.img_names[index])
# print("lbl path: ", lbl_path)
label_part = torch.Tensor(np.array(Image.open(lbl_path)))
except:
label_part = torch.zeros(img.shape[1], img.shape[2])
label[i,:,:] = label_part
label = (label>0)+0
img, label = self.data_transform(img, label, is_train=self.is_train, apply_norm=self.apply_norm)
label = (label>=0.5)+0
label_of_interest = ''
# print("img shape: ",img.shape)
# print("label shape: ", label.shape)
else:
try:
label = torch.Tensor(np.array(Image.open(self.label_path_list[index])))
except:
label = torch.zeros(img.shape[1], img.shape[2])
label = label.unsqueeze(0)
label = (label>0)+0
label_of_interest = self.label_list[index]
img, label = self.data_transform(img, label, is_train=self.is_train, apply_norm=self.apply_norm)
#convert all grayscale pixels due to resizing back to 0, 1
label = (label>=0.5)+0
label = label[0]
return img, label, self.img_path_list[index], label_of_interest
def __len__(self):
return len(self.img_path_list)
class LiTS2_Dataset(Dataset):
def __init__(self, config, is_train=False, shuffle_list = True, apply_norm=True, no_text_mode=False) -> None:
super().__init__()
self.root_path = config['data']['root_path']
self.df = pd.read_csv(os.path.join(self.root_path, 'lits_train.csv'))
self.df = self.df.sample(frac=1)
self.train_df = self.df[:int(0.8*len(self.df))]
self.val_df = self.df[int(0.8*len(self.df)):]
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.label_names = config['data']['label_names']
self.num_classes = len(self.label_names)
self.config = config
self.apply_norm = apply_norm
self.no_text_mode = no_text_mode
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
#define data transform
self.data_transform = LiTS2_Transform(config=config)
def __len__(self):
return len(self.img_path_list)
def set_is_train(self,istrain):
self.is_train = istrain
def populate_lists(self):
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
if self.is_train:
df = self.train_df
else:
df = self.val_df
for i in range(len(df)):
img_path = os.path.join(self.root_path,'dataset_6',df['filepath'].iloc[i][18:])
liver_mask_path = os.path.join(self.root_path,'dataset_6',df['liver_maskpath'].iloc[i][18:])
tumor_mask_path = os.path.join(self.root_path,'dataset_6',df['tumor_maskpath'].iloc[i][18:])
self.img_path_list.append(img_path)
self.img_path_list.append(img_path)
self.img_names.append(df['filepath'].iloc[i][28:])
self.img_names.append(df['filepath'].iloc[i][28:])
self.label_path_list.append(liver_mask_path)
self.label_path_list.append(tumor_mask_path)
self.label_list.append("Liver")
self.label_list.append('Tumor')
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
try:
label = torch.Tensor(np.array(Image.open(self.label_path_list[index])))[:,:,0]
except:
label = torch.zeros(img.shape[1], img.shape[2])
label = label.unsqueeze(0)
label = (label>0)+0
label_of_interest = self.label_list[index]
#convert all grayscale pixels due to resizing back to 0, 1
img, label = self.data_transform(img, label, is_train=self.is_train, apply_norm=self.apply_norm)
label = (label>=0.5)+0
label = label[0]
return img, label, self.img_path_list[index], label_of_interest
class KvasirSeg_Dataset(Dataset):
def __init__(self, config, is_train=False, shuffle_list = True, apply_norm=True, no_text_mode=False):
super().__init__()
self.root_path = config['data']['root_path']
self.img_names = []
self.img_path_list = []
self.label_path_list = []
self.label_list = []
self.is_train = is_train
self.label_names = config['data']['label_names']
self.num_classes = len(self.label_names)
self.config = config
self.apply_norm = apply_norm
self.no_text_mode = no_text_mode
self.populate_lists()
if shuffle_list:
p = [x for x in range(len(self.img_path_list))]
random.shuffle(p)
self.img_path_list = [self.img_path_list[pi] for pi in p]
self.img_names = [self.img_names[pi] for pi in p]
self.label_path_list = [self.label_path_list[pi] for pi in p]
self.label_list = [self.label_list[pi] for pi in p]
#define data transform
self.data_transform = kvasirSeg_Transform(config=config)
def __len__(self):
return len(self.img_path_list)
def populate_lists(self):
if self.is_train:
imgs_path = os.path.join(self.root_path, "train/images")
masks_path = os.path.join(self.root_path, "train/masks")
else:
imgs_path = os.path.join(self.root_path, "val/images")
masks_path = os.path.join(self.root_path, "val/masks")
for i in os.listdir(imgs_path):
if self.no_text_mode:
self.img_names.append(i)
self.img_path_list.append(os.path.join(imgs_path,i))
self.label_path_list.append(os.path.join(masks_path, i))
self.label_list.append('')
else:
for label_name in self.label_names:
self.img_names.append(i)
self.img_path_list.append(os.path.join(imgs_path,i))
self.label_path_list.append(os.path.join(masks_path, i))
self.label_list.append(label_name)
def __getitem__(self, index):
img = torch.as_tensor(np.array(Image.open(self.img_path_list[index]).convert("RGB")))
if self.config['data']['volume_channel']==2:
img = img.permute(2,0,1)
try:
label = torch.Tensor(np.array(Image.open(self.label_path_list[index])))[:,:,0]
except:
label = torch.zeros(img.shape[1], img.shape[2])
label = label.unsqueeze(0)
label = (label>0)+0
label_of_interest = self.label_list[index]
img, label = self.data_transform(img, label, is_train=self.is_train, apply_norm=self.apply_norm)
#convert all grayscale pixels due to resizing back to 0, 1
img, label = self.data_transform(img, label, is_train=self.is_train, apply_norm=self.apply_norm)
label = (label>=0.5)+0
label = label[0]
return img, label, self.img_path_list[index], label_of_interest
def get_data(config, tr_folder_start, tr_folder_end, val_folder_start, val_folder_end, use_norm=True, no_text_mode=False):
dataset_dict = {}
dataloader_dict = {}
dataset_sizes = {}
#generate label_dict
print("hEREE")
label_dict = {}
for i,ln in enumerate(config['data']['label_names']):
label_dict[ln] = i
if config['data']['name']=='IDRID':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = IDRID_Dataset(config, folder_start=0, folder_end=40, shuffle_list=True, is_train=True, apply_norm=use_norm)
if x=='val':
dataset_dict[x] = IDRID_Dataset(config, folder_start=40, folder_end=60, shuffle_list=False, apply_norm=use_norm)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name'] == 'AMOS22':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Generic_Dataset_3d(config, folder_start=0, folder_end=40, shuffle_list=True, is_train=True, apply_norm=use_norm, use_folder_idx=False)
if x=='val':
dataset_dict[x] = Generic_Dataset_3d(config, folder_start=40, folder_end=60, shuffle_list=False, apply_norm=use_norm, use_folder_idx=False)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='ENDOVIS':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Endovis_Dataset(config, start=0, end=180, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = Endovis_Dataset(config, start=180, end=330, shuffle_list=False, apply_norm=use_norm, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='ENDOVIS 18':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Endovis_18(config, start=0, end=18000, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = Endovis_18(config, start=0, end=33000, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='CHESTXDET':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = ChestXDet_Dataset(config, start=0, end=69565, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = ChestXDet_Dataset(config, start=69566, end=83000, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='CHOLEC 8K':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Cholec_Ins_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = Cholec_Ins_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='ULTRASOUND':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Ultrasound_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = Ultrasound_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='KVASIRSEG':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = KvasirSeg_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = KvasirSeg_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='LITS2':
dataset_lits = LiTS2_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
for x in ['train','val']:
if x=='train':
dataset_lits.set_is_train = True
if x=='val':
dataset_lits.set_is_train = False
dataset_lits.populate_lists()
dataset_dict[x] = dataset_lits
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=="ISIC2018":
for x in ['train','val']:
if x=='train':
dataset_dict[x] = ISIC2018_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = ISIC2018_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=="Polyp":
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Polyp_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = Polyp_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='RITE':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = RITE_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = RITE_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='GLAS':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = GLAS_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = GLAS_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='Refuge':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Refuge_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = Refuge_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='BTCV':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = BTCV_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = BTCV_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='ATR':
for x in ['train','val']:
if x=='train':
dataset_dict[x] = ATR_Dataset(config, shuffle_list=True, is_train=True, apply_norm=use_norm, no_text_mode=no_text_mode)
if x=='val':
dataset_dict[x] = ATR_Dataset(config, shuffle_list=False, apply_norm=use_norm, is_train=False, no_text_mode=no_text_mode)
dataset_sizes[x] = len(dataset_dict[x])
elif config['data']['name']=='ArcadeDataset':
print("HEREEEEEE")
for x in ['train', 'val']: # Changed 'test' to 'val'
is_train = x == 'train'
dataset_dict[x] = ArcadeDataset(config, is_train=is_train, shuffle_list=True, apply_norm=use_norm)
dataset_sizes[x] = len(dataset_dict[x])
print(f"{x.capitalize()} dataset size: {dataset_sizes[x]}")
else:
for x in ['train','val']:
if x=='train':
dataset_dict[x] = Generic_Dataset_3d(config, is_train=True, folder_start=tr_folder_start, folder_end=tr_folder_end)
elif x=='val':
dataset_dict[x] = Generic_Dataset_3d(config, is_train=False, folder_start=val_folder_start, folder_end=val_folder_end)
dataset_sizes[x] = len(dataset_dict[x])
return dataset_dict, dataset_sizes, label_dict