SALT-SAM / AllinonSAM /eval /endovis18 /calculate_ious.py
pythn's picture
Upload with huggingface_hub
4a1f918 verified
import os
import torch
import PIL.Image as Image
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/biastuning/")
from utils import *
results_folder_name = 'endovis18_10label_textaffine_decdertuning_4e-4_adamw_focal_alpha75e-2_gamma_2_256_bs64_rsz_manyaug_blanklables'
ious_all = {}
for object in os.listdir(results_folder_name):
ious = []
print("Starting object: ", object)
preds_path = os.path.join(results_folder_name, object, 'rescaled_preds')
gt_path = os.path.join(results_folder_name, object, 'rescaled_gt')
for i,im in enumerate(os.listdir(gt_path)):
if i<13:
continue
label = np.array(Image.open(os.path.join(gt_path,im)))[60:306,150:400]
label = (label>127)+0
pred = np.array(Image.open(os.path.join(preds_path,im)))[60:306, 150:400]
pred = (pred>127) + 0
plt.imshow(label)
plt.show()
plt.imshow(label)
plt.show()
print(label.shape)
print(pred.shape)
print(np.unique(pred))
1/0