|
import torch |
|
import yaml |
|
import sys |
|
import copy |
|
import os |
|
sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/SVDSAM/") |
|
|
|
from data_utils import * |
|
from model import * |
|
from utils import * |
|
from baselines import UNet, UNext, medt_net |
|
from vit_seg_modeling import VisionTransformer |
|
from vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg |
|
from axialnet import MedT |
|
|
|
label_names = ['Liver','Tumor'] |
|
|
|
label_dict = {} |
|
|
|
for i,ln in enumerate(label_names): |
|
label_dict[ln] = i |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--data_folder', default='config_tmp.yml', |
|
help='data folder file path') |
|
|
|
parser.add_argument('--data_config', default='config_tmp.yml', |
|
help='data config file path') |
|
|
|
parser.add_argument('--model_config', default='model_baseline.yml', |
|
help='model config file path') |
|
|
|
parser.add_argument('--pretrained_path', default=None, |
|
help='pretrained model path') |
|
|
|
parser.add_argument('--save_path', default='checkpoints/temp.pth', |
|
help='pretrained model path') |
|
|
|
parser.add_argument('--gt_path', default='', |
|
help='ground truth path') |
|
|
|
parser.add_argument('--device', default='cuda:0', help='device to train on') |
|
|
|
parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument') |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
def main(): |
|
args = parse_args() |
|
with open(args.data_config, 'r') as f: |
|
data_config = yaml.load(f, Loader=yaml.FullLoader) |
|
with open(args.model_config, 'r') as f: |
|
model_config = yaml.load(f, Loader=yaml.FullLoader) |
|
codes = args.codes.split(',') |
|
codes = [int(c) for c in codes] |
|
|
|
label_dict = { |
|
'Liver': [[100,0,100]], |
|
'Kidney': [[255,255,0]], |
|
'Pancreas': [[0,0,255]], |
|
'Vessels': [[255,0,0]], |
|
'Adrenals': [[0,255,255]], |
|
'Gall Bladder': [[0,255,0]], |
|
'Bones': [[255,255,255]], |
|
'Spleen': [[255,0,255]] |
|
} |
|
|
|
|
|
|
|
os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True) |
|
os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True) |
|
os.makedirs(os.path.join(args.save_path,"rescaled_gt"),exist_ok=True) |
|
|
|
|
|
|
|
|
|
in_channels = model_config['in_channels'] |
|
out_channels = model_config['num_classes'] |
|
img_size = model_config['img_size'] |
|
if model_config['arch']=='Prompt Adapted SAM': |
|
model = Prompt_Adapted_SAM(model_config, label_dict, args.device, training_strategy='svdtuning') |
|
elif model_config['arch']=='UNet': |
|
model = UNet(in_channels=in_channels, out_channels=out_channels) |
|
elif model_config['arch']=='UNext': |
|
model = UNext(num_classes=out_channels, input_channels=in_channels, img_size=img_size) |
|
elif model_config['arch']=='MedT': |
|
|
|
model = MedT(img_size=img_size, num_classes=out_channels) |
|
elif model_config['arch']=='TransUNet': |
|
config_vit = CONFIGS_ViT_seg['R50-ViT-B_16'] |
|
config_vit.n_classes = out_channels |
|
config_vit.n_skip = 3 |
|
|
|
|
|
model = VisionTransformer(config_vit, img_size=img_size, num_classes=config_vit.n_classes) |
|
|
|
model.load_state_dict(torch.load(args.pretrained_path, map_location=args.device)) |
|
model = model.to(args.device) |
|
model = model.eval() |
|
|
|
|
|
data_transform = LiTS2_Transform(config=data_config) |
|
|
|
|
|
tumor_dices = [] |
|
tumor_ious=[] |
|
liver_dices = [] |
|
liver_ious=[] |
|
|
|
|
|
|
|
root_path = "/media/ubuntu/New Volume/jay/LiTS2/archive" |
|
imgs_path = os.path.join(root_path, 'dataset_6/dataset_6') |
|
test_csv = pd.read_csv(os.path.join(root_path, 'lits_test.csv')) |
|
for i in range(len(test_csv)): |
|
if i%10!=0: |
|
continue |
|
img_path = (os.path.join(root_path,'dataset_6',test_csv['filepath'].iloc[i][18:])) |
|
image_name = test_csv['filepath'].iloc[i][28:] |
|
liver_mask_path = os.path.join(root_path,'dataset_6',test_csv['liver_maskpath'].iloc[i][18:]) |
|
tumor_mask_path = os.path.join(root_path,'dataset_6',test_csv['tumor_maskpath'].iloc[i][18:]) |
|
|
|
|
|
img = torch.as_tensor(np.array(Image.open(img_path).convert("RGB"))) |
|
img = img.permute(2,0,1) |
|
C,H,W = img.shape |
|
|
|
|
|
try: |
|
liver_label = torch.Tensor(np.array(Image.open(liver_mask_path)))[:,:,0] |
|
tumor_label = torch.Tensor(np.array(Image.open(tumor_mask_path)))[:,:,0] |
|
except: |
|
liver_label = torch.zeros(H, W) |
|
tumor_label = torch.zeros(H, W) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
liver_label = liver_label.unsqueeze(0) |
|
liver_label = (liver_label>0)+0 |
|
tumor_label = tumor_label.unsqueeze(0) |
|
tumor_label = (tumor_label>0)+0 |
|
|
|
|
|
img1, liver_label = data_transform(img, liver_label, is_train=False, apply_norm=True) |
|
liver_label = (liver_label>=0.5)+0 |
|
|
|
|
|
|
|
_, tumor_label = data_transform(img, tumor_label, is_train=False, apply_norm=True) |
|
tumor_label = (tumor_label>=0.5)+0 |
|
|
|
|
|
|
|
img = img1.unsqueeze(0).to(args.device) |
|
final_label = torch.cat([liver_label,tumor_label], dim=0) |
|
masks,_ = model(img,'') |
|
masks_liver = masks[:,0,:,:].cpu() |
|
masks_tumor = masks[:,1,:,:].cpu() |
|
|
|
plt.imshow(((masks_liver>=0.5)[0]), cmap='gray') |
|
plt.savefig(os.path.join(args.save_path,'rescaled_preds', image_name[:-4] +'_liver.png')) |
|
plt.close() |
|
|
|
|
|
plt.imshow(((masks_tumor>=0.5)[0]), cmap='gray') |
|
plt.savefig(os.path.join(args.save_path,'rescaled_preds', image_name[:-4] +'_tumor.png')) |
|
plt.close() |
|
|
|
|
|
|
|
plt.imshow((liver_label[0]), cmap='gray') |
|
plt.savefig(os.path.join(args.save_path,'rescaled_gt', image_name[:-4] +'_liver.png')) |
|
plt.close() |
|
|
|
|
|
|
|
plt.imshow((tumor_label[0]), cmap='gray') |
|
plt.savefig(os.path.join(args.save_path,'rescaled_gt', image_name[:-4] +'_tumor.png')) |
|
plt.close() |
|
|
|
|
|
|
|
|
|
|
|
liver_dices.append(dice_coef(liver_label, ((masks_liver[0]>=0.5)+0).unsqueeze(0))) |
|
tumor_dices.append(dice_coef(tumor_label, ((masks_tumor[0]>=0.5)+0).unsqueeze(0))) |
|
|
|
liver_ious.append(iou_coef(liver_label, ((masks_liver[0]>=0.5)+0).unsqueeze(0))) |
|
tumor_ious.append(iou_coef(tumor_label, ((masks_tumor[0]>=0.5)+0).unsqueeze(0))) |
|
|
|
|
|
print("Liver DICE: ",torch.mean(torch.Tensor(liver_dices))) |
|
print("Liver IoU", torch.mean(torch.Tensor(liver_ious))) |
|
print("Tumor DICE", torch.mean(torch.Tensor(tumor_dices))) |
|
print("Tumor IoU", torch.mean(torch.Tensor(tumor_ious))) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|
|
|
|
|
|
|
|
|